17.一個盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.
(1)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是奇數(shù)的概率;
(2)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片. 求取出了4次才停止取出卡片的概率.

分析 (1)利用古典概率及其計算公式,先求出2張卡片上一個奇數(shù)、一個偶數(shù)的取法,再求出求所有的取法,相除可求得要求事件的概率;
(2)求出前三次都取到奇數(shù)的取法,再求出求所有的取法,相除可得要求事件的概率.

解答 解:(1)∵奇數(shù)加上偶數(shù)等于奇數(shù),
故所得新數(shù)是奇數(shù)的概率P=$\frac{{C}_{3}^{1}{•C}_{5}^{1}}{{C}_{8}^{2}}$=$\frac{15}{28}$.
(2)取出了4次才停止取出卡片,說明前3次取出的卡片都是奇數(shù),
故取出了4次才停止取出卡片的概率為$\frac{{C}_{3}^{1}{•C}_{2}^{1}{•C}_{1}^{1}}{8•7•6}$=$\frac{1}{56}$.

點評 本題主要考查古典概率及其計算公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義運算(a,b)?(c,d)=ac-bd,則符合條件(z,1-2i)?(-1,1+i)=0的復(fù)數(shù)z的所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x),不等式f(x)<0的解集為(0,5),且f(x)在區(qū)間[-1,3]上的最大值為12
(1)求f(x)得解析式    
(2)設(shè)函數(shù)f(x)在x∈[t,t+1]的最小值為g(t),求g(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}}&{(x<1)}\\{lo{g}_{81}x}&{(x≥1)}\end{array}\right.$,則滿足f(x)=$\frac{1}{4}$的x的值是(  )
A.2B.-2C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.位于坐標(biāo)原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位;移動的方向為向左或向右,并且向左、向右移動的概率都是$\frac{1}{2}$,質(zhì)點P移動6次后回到原點的概率是(  )
A.($\frac{1}{2}$)6B.C${\;}_{6}^{3}$($\frac{1}{2}$)6C.C${\;}_{6}^{3}$($\frac{1}{2}$)3D.C${\;}_{6}^{3}$C${\;}_{6}^{3}$($\frac{1}{2}$)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列判斷不正確的是( 。
A.若A,B,C三點共線,則$\overrightarrow{AB}$∥$\overrightarrow{BC}$B.若$\overrightarrow{AB}$∥$\overrightarrow{BC}$,則A,B,C三點共線
C.若AB∥CD,則$\overrightarrow{AB}$,$\overrightarrow{CD}$共線D.若$\vec a$∥$\vec b$,$\vec b$∥$\vec c$,則$\vec a$∥$\vec c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)(x∈R)滿足:①?x∈R,有f(x)f(y)=f(x+y)+f(x-y)成立;②?x0∈R,使f(x0)≠0,則下列結(jié)論中錯誤的是( 。
A.f(0)=2B.函數(shù)f(x)是偶函數(shù)C.函數(shù)f(x)是奇函數(shù)D.[f(x)+1][f(x)-1]=f(2x)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線以橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{5}$=1的焦點為頂點,以橢圓的長軸端點為焦點,則該雙曲線方程為$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.棱長為3的正方體內(nèi)部有一個半徑為1的小球.當(dāng)小球在正方體內(nèi)部自由運動時,則在正方體內(nèi)部小球所不能到達(dá)的空間的體積為20-$\frac{13π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案