8.如下圖,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1
中點(diǎn),且CF⊥AB,AC=BC.
(Ⅰ)求證:CF∥平面AEB1;
(Ⅱ)求證:平面AEB1⊥平面ABB1A1

分析 (I)取AB1的中點(diǎn)G,連結(jié)EG,F(xiàn)G,證得四邊形CEGF為平行四邊形,即CF∥EG,再由線面平行的判定定理即可得證;
(II)運(yùn)用直三棱柱的定義和條件,運(yùn)用線面垂直的判定定理可得CF⊥平面ABB1A1,結(jié)合CF∥EG,再由面面垂直的判定定理,即可得證.

解答 證明:(I)取AB1的中點(diǎn)G,連結(jié)EG,F(xiàn)G;
∵CC1∥BB1 且CC1=BB1,又∵E為CC1的中點(diǎn),
∴CE∥FG且CE=FG,
從而,四邊形CEGF為平行四邊形;
即CF∥EG,
又∵EG?面AEB1,CF?面AEB1
∴CF∥平面AEB1
(II)∵三棱柱ABC-A1B1C1為直三棱柱,
且CF?面ABC,
∴CF⊥AA1;
又∵CF⊥AB且AB∩BB1=B,
∴CF⊥平面ABB1A1
由(1)有CF∥EG,∴EG⊥平面ABB1A1
又∵EG?面AEB1,
∴平面AEB1⊥平面ABB1A1

點(diǎn)評(píng) 本題考查空間線面平行的判定和面面垂直的判定,注意運(yùn)用判定定理和平面幾何的判定和性質(zhì),考查推理和空間想象能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點(diǎn),現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點(diǎn),平面BCH與AE、AF分別交于I、G兩點(diǎn)
(Ⅰ)求證:IH∥BC;
(Ⅱ)求直線AE與平面角GIC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)既是偶函數(shù),又在區(qū)間(1,2)上是增函數(shù)的是( 。
A.y=-$\frac{2}{x}$B.y=x+1C.y=$\sqrt{{x}^{2}-4}$D.y=2x2-|x|+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線的離心率為$\frac{\sqrt{7}}{2}$,且其頂點(diǎn)到其漸近線的距離為$\frac{2\sqrt{21}}{7}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1
C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1或$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD=a,M是EA的中點(diǎn).(1)求證:(1)DM∥平面ABC;
(2)CM⊥AD;
(3)求這個(gè)多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,點(diǎn)M、N、E分別為A1B、B1C1、A1B1上的中點(diǎn).
(Ⅰ)求證:平面MNE∥平面ACC1A1;
(Ⅱ)若AB=AC=AA1=2,求證:平面BMC⊥平面AMC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.當(dāng)-2≤x<0時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-2]B.(-∞,-2)C.[-6,+∞)D.[-6,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入n的值為8,則輸出S的值為( 。
A.546B.547C.1067D.1066

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知正四棱錐V-ABCD的底面積為16,高為6,則該正四棱錐的側(cè)棱長(zhǎng)為$2\sqrt{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案