3.已知函數(shù)f(x)=2x2+2kx-8在[-5,-1]上單調(diào)遞減,則實數(shù)k的取值范圍是( 。
A.(-∞,2]B.[2,+∞)C.(-∞,1]D.[1,+∞]

分析 先求出函數(shù)的對稱軸,結(jié)合二次函數(shù)的圖象及性質(zhì)得不等式,求出即可.

解答 解:由題意得:
對稱軸x=-$\frac{k}{2}$≥-1,
解得:k≤2,
故選:A

點評 本題考查了二次函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對于非零向量$\overrightarrow a$,$\overrightarrow b$,下列命題中正確的是(  )
A.$\overrightarrow a$•$\overrightarrow b$=0⇒$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$B.$\overrightarrow a$∥$\overrightarrow b$⇒$\overrightarrow a$在$\overrightarrow b$方向上的投影為|${\overrightarrow a}$|
C.$\overrightarrow a$⊥$\overrightarrow b$⇒$\overrightarrow a$•$\overrightarrow b$=($\overrightarrow a$•$\overrightarrow b$)2D.$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$⇒$\overrightarrow a$=$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知在($\frac{1}{2}$x2-$\frac{1}{\sqrt{x}}$)n的展開式中,第9項為常數(shù)項,則n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可知,重量在區(qū)間[15,20]的樣本個數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:關(guān)于x的函數(shù)y=(a-1)x為增函數(shù);命題q:不等式-3x≤a對一切正實數(shù)均成立.若命題“p∨q”為真命題,且“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)的定義域為(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2.已知函數(shù)f(x)=x3-2mx2-mx,若f(x)∈Ω1,且f(x)∉Ω2,實數(shù)m的取值范圍(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓O:x2+y2=9上到直線l:a(x+4)+by=0(a,b是實數(shù))的距 離為1的點有且僅有2個,則直線l斜率的取值范圍是$(-∞,-\frac{{\sqrt{3}}}{3})∪(\frac{{\sqrt{3}}}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的函數(shù)f(x)滿足f(x)>1-f′(x),若f(0)=6,則不等式f(x)>1+$\frac{5}{e^x}$(e為自然對數(shù)的底數(shù))的解集為( 。
A.(0,+∞)B.(5,+∞)C.(-∞,0)∪(5,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+$\frac{x}$,且f(x)+f(${\frac{1}{x}}$)=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過點(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f($\frac{a^2}{2}$)>0;
(3)當(dāng)f(x)存在三個不同的零點時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案