17.設(shè)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$若f(a)=f(a+1),則f($\frac{1}{a}$)=( 。
A.2B.4C.6D.8

分析 利用已知條件,求出a的值,然后求解所求的表達(dá)式的值即可.

解答 解:當(dāng)a∈(0,1)時,f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$,若f(a)=f(a+1),可得$\sqrt{a}$=2a,
解得a=$\frac{1}{4}$,則:f($\frac{1}{a}$)=f(4)=2(4-1)=6.
當(dāng)a∈[1,+∞)時.f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$,若f(a)=f(a+1),
可得2(a-1)=2a,顯然無解.
故選:C.

點評 本題考查分段函數(shù)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x+3y-3≤0}\\{2x-3y+3≥0}\\{y+3≥0}\end{array}\right.$,則z=2x+y的最小值是( 。
A.-15B.-9C.1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)m,n滿足$\frac{m}{1+i}$=1-ni(其中i是虛數(shù)單位),則雙曲線mx2-ny2=1的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知半徑為120mm的圓上,有一條弧的長是144mm,則該弧所對的圓心角的弧度數(shù)為1.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z=$\frac{i}{2-i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知隨機(jī)變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<$\frac{1}{2}$,則( 。
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F是雙曲線C:x2-$\frac{{y}^{2}}{3}$=1的右焦點,P是C上一點,且PF與x軸垂直,點A的坐標(biāo)是(1,3),則△APF的面積為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)等比數(shù)列{an}滿足a1+a2=-1,a1-a3=-3,則a4=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M、N兩點.若∠MAN=60°,則C的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案