5.某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯)得到如下數(shù)據(jù)
日期11日12日13日14日15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(1)若先從這5組數(shù)據(jù)中抽取2組,列出所有可能的結(jié)果并求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給的5組數(shù)據(jù)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并根據(jù)線性回歸方程預(yù)測(cè)當(dāng)氣象臺(tái)預(yù)報(bào)1月16日的白天氣溫為7℃時(shí)奶茶店這種飲料的銷量(結(jié)果四舍五入).
附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中$\left\{\begin{array}{l}{\widehat=\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})=\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{xy}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

分析 (1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有4種.根據(jù)等可能事件的概率做出結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.利用線性回歸方程,x取7,即可預(yù)測(cè)該奶茶店這種飲料的銷量.

解答 解:(1)設(shè)這5組數(shù)據(jù)分別為a,b,c,d,e,則抽取2組數(shù)據(jù)可能的情況為(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e) 總事件數(shù)為10種,滿足相鄰2天的基本事件數(shù)為4種情況,故概率P=$\frac{2}{5}$ …6分
(2)$\overline{x}$=$\frac{9+10+12+11+8}{5}=10$,$\overline{y}$=$\frac{23+25+30+26+21}{5}$=25…7分
$\underset{\stackrel{5}{∑}}{i=1}$(xi-$\overline{x}$)(yi$-\overline{y}$)=(-1)×(-2)+0+2×5+1×1+(-2)×(-4)=21
$\underset{\stackrel{5}{∑}}{i=1}$(xi-$\overline{x}$)2=(-1)2+02+22+12+(-2)2=10…9分
∴$\widehat$=21,$\widehat{a}$=25-2.1×10=4∴$\widehat{y}$=2.1x+4…10分
故當(dāng)溫度為7℃時(shí),銷量為y=2.1×7+4=18.7杯.
此時(shí)銷量約為19杯…12分

點(diǎn)評(píng) 本題考查等可能事件的概率,考查線性回歸方程的求法,考查最小二乘法,考查估計(jì)驗(yàn)算所求的方程是否是可靠的,是一個(gè)綜合題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)<6的解集為(-1,3),求a的值;
(2)在(1)的條件下,若存在x0∈R,使f(x0)≤t-f(-x0),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A,B是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右頂點(diǎn),點(diǎn)C在該橢圓上,在△ABC中,tanA=$\frac{2}{3}$,tanB=$\frac{3}{8}$,則該橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\sqrt{3}-1$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在三棱錐A-BCD中,BC⊥BD,AD⊥AC,CD=2,∠ACD=30°,∠DCB=45°,AO⊥平面BCD,垂足O恰好在BD上.
(Ⅰ)證明:BC⊥AD;
(Ⅱ)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若(2x+$\frac{1}{\sqrt{x}}$)n的展開(kāi)式中第2項(xiàng)與第3項(xiàng)系數(shù)相等,則${∫}_{0}^{3}$xn-2dx=$\frac{81}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.科學(xué)家在研究某種細(xì)胞的繁殖規(guī)律時(shí),得到如表中的實(shí)驗(yàn)數(shù)據(jù),經(jīng)計(jì)算得到回歸直線方程為$\hat y$=0.85x-0.25.
天數(shù)x34567
繁殖數(shù)(千個(gè))2.53t4.56
由以上信息,可得表中t的值為( 。
A.3.5B.3.75C.4D.4.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,橢圓E的中心為坐標(biāo)原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,且F1在拋物線y2=4x的準(zhǔn)線上,點(diǎn)P是橢圓E上的一個(gè)動(dòng)點(diǎn),△PF1F2面積的最大值為$\sqrt{3}$.
(1)求橢圓E的方程;
(2)過(guò)焦點(diǎn)F1,F(xiàn)2作兩條平行直線分別交橢圓E于A,B,C,D四個(gè)點(diǎn).
①試判斷四邊形ABCD能否是菱形,并說(shuō)明理由;
②求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.四棱錐S-ABCD中,底面ABCD為平行四邊形,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC.
(1)設(shè)平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線C1:x2=2py的焦點(diǎn)F與橢圓C2:$\frac{{x}^{2}}{4}$+y2=1的上頂點(diǎn)重合,直線MN:y=kx+m與拋物線C1交于M、N兩點(diǎn),分別以M、N為切點(diǎn)作曲線C1的兩條切線交與點(diǎn)P.
(1)求拋物線C1的方程;
(2)①若直線MN過(guò)拋物線C1的焦點(diǎn),判斷點(diǎn)P是否在拋物線C1的準(zhǔn)線上,并說(shuō)明理由;
②若點(diǎn)P在橢圓C2上,求△PMN面積S的最大值及相應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案