18.化簡(x-4)4+4(x-4)3+6(x-4)2+4(x-4)+1得(x-3)4

分析 由條件逆用二項(xiàng)式定理、二項(xiàng)展開式的通項(xiàng)公式,得出結(jié)論.

解答 解:(x-4)4+4(x-4)3+6(x-4)2+4(x-4)+1=[(x-4)+1]4=(x-3)4,
故答案為:(x-3)3

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,AC=AC1=B1C=B1C1=2,AC⊥AC1,B1C⊥B1C1,O為CC1的中點(diǎn).
(1)求證:BB1⊥AB1;
(2)若AB=2$\sqrt{3}$,求平面ABC與平面AOB1所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≤0}\\{2x+y≥1}\\{x+y≤2}\end{array}\right.$,則z=3x+y的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,它的前n項(xiàng)和為Sn=9.則n=( 。
A.9B.10C.99D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐E-ABCD中,底面ABCD是矩形,AB=2,AE⊥平面CDE,AE=DE=2$\sqrt{6}$,F(xiàn)為線段ED上的一點(diǎn).
(Ⅰ)求證:平面AED⊥平面ABCD;
(Ⅱ)若二面角A-CB-E的平面角是二面角A-CB-F的平面角大小的2倍,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow{a}$-2$\overrightarrow$|≤1,則$\overrightarrow{a}•\overrightarrow$的最小值是$-\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.四條直線每兩條都相交,且任三條都不交于一點(diǎn),它們可確定的平面?zhèn)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,則sin($\frac{5π}{12}$+θ)的值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)是一次函數(shù),且函數(shù)圖象經(jīng)過點(diǎn)(0,1),(-1,3),則f(x)的解析式為( 。
A.f(x)=2x-1B.f(x)=2x+1C.f(x)=-2x-1D.f(x)=-2x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案