12.將3本不同的數(shù)學(xué)書和2本不同的語文書在書架上排成一行,若2本語文書相鄰排放,則不同的排放方案共有48種(用數(shù)字作答)

分析 根據(jù)題意,使用捆綁法,2本不同的語文書,將其排在一起當(dāng)做一個元素,有2種情況,再將其與其他3本不同的數(shù)學(xué)書全排列,由分步計(jì)數(shù)原理乘法公式,計(jì)算可得答案.

解答 解:由題意分2步進(jìn)行,
先將2本不同的語文書排在一起,看成做一個元素,考慮其順序,有A22種情況,
再將其與其他3本不同的數(shù)學(xué)書全排列,有A44種情況,
則其不同的排列方法為A44A22=48種,
故答案為:48.

點(diǎn)評 本題考查排列、組合的運(yùn)用,注意相鄰問題一般用捆綁法,不相鄰問題用插空法或間接法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從甲地到乙地有3條公路、2條鐵路,某人要從甲地到乙地共有n種不同的走法,則n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.5名男生、2名女生站成一排照像:
(1)兩名女生都不站在兩端,有多少不同的站法?
(2)兩名女生要相鄰,有多少種不同的站法?
(3)兩名女生不相鄰,有多少種不同的站法?
(4)女生甲不在左端,女生乙不在右端.有多少不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.雙曲線C:$\frac{x^2}{3}-{y^2}$=1的漸近線方程是$y=±\frac{{\sqrt{3}}}{3}x$;若拋物線y2=2px(p>0)的焦點(diǎn)與雙曲線C的一個焦點(diǎn)重合,則p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)1名老師和6名學(xué)生排成一排,要求老師不能站在兩端,那么有多少種不同的排法?
(2)從6名男生、5名女生中任選4人參加競賽,要求男女至少各1名,有多少種不同選法?
(3)一張節(jié)目表上原有3個節(jié)目,如果保持這3個節(jié)目的相對順序不變,再添進(jìn)去2個新節(jié)目,有多少種安排方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線的漸近線方程為y=±2x,則其離心率大小是$\sqrt{5}$或$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某班級6名同學(xué)登臺演出,順序有如下要求:同學(xué)甲必須排在前兩位.同學(xué)乙不能排在第一位,同學(xué)丙必須排在最后一位,該班級這六名同學(xué)演出順序的編排方案共有( 。
A.54種B.48種C.42種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某工人生產(chǎn)合格零件的產(chǎn)量逐月增長,前5個月的產(chǎn)量如表所示:
月份x12345
合格零件y(件)50607080100
(1)若從這5組數(shù)據(jù)中抽出兩組,求抽出的2組數(shù)據(jù)恰好是相鄰的兩個月數(shù)據(jù)的概率;
(2)請根據(jù)所給5組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a;并根據(jù)線性回歸方程預(yù)測該工人第6個月生產(chǎn)的合格零件的件數(shù).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…(xn,yn)其回歸線y=bx+a的斜率和截距的最小二乘估計(jì)分別為:$b=\frac{{\sum_{i=1}^n{{X_i}{Y_i}}-n\overline{x•}\overline y}}{{\sum_{i=1}^n{X_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一個袋子中有形狀大小完全相同的3個黑球和4個白球.
(1)從中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,求X的分布列.
(2)從中任意摸出兩個球,用“ξ=0”表示兩個球全是黑球,用“ξ=1”兩個球不全是黑球,求ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案