1.某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為$\frac{π}{3}$(∠ACB=$\frac{π}{3}$),墻AB的長度為6米,(已有兩面墻的可利用長度足夠大),記∠ABC=θ
(1)若θ=$\frac{π}{4}$,求△ABC的周長(結(jié)果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積△ABC的面積盡可能大,問當θ為何值時,該活動室面積最大?并求出最大面積.

分析 (1)在△ABC中,由正弦定理可得AC,BC,即可求△ABC的周長;
(2)利用余弦定理列出關系式,將c,cosC的值代入并利用基本不等式求出ab的最大值,利用三角形的面積公式求出面積的最大值,以及此時θ的值.

解答 解:(1)在△ABC中,由正弦定理可得AC=$\frac{6•\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=2$\sqrt{6}$,BC=$\frac{6sin75°}{\frac{\sqrt{3}}{2}}$=3$\sqrt{2}$+$\sqrt{6}$,
∴△ABC的周長為6+3$\sqrt{2}$+3$\sqrt{6}$≈17.60米
(2)在△ABC中,由余弦定理:c2=602=a2+b2-2abcos60°,
∴a2+b2-ab=36,
∴36+ab=a2+b2≥2ab,即ab≤36,
∴S△ABC=$\frac{1}{2}$AC•BC•sin$\frac{π}{3}$=$\frac{\sqrt{3}}{4}$ab≤9$\sqrt{3}$,
此時a=b,△ABC為等邊三角形,
∴θ=60°,(S△ABCmax=9$\sqrt{3}$.

點評 此題考查了正弦定理、余弦定理,基本不等式的應用,熟練掌握余弦定理是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.(1)已知實數(shù)a,b,c滿足a+b+c=1,求a2+b2+c2的最小值;
(2)已知正數(shù)a,b,c滿足a+b+c=1,求證:$({a+\frac{1}{a}})({b+\frac{1}})({c+\frac{1}{c}})≥\frac{1000}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前7次考試的數(shù)學成績x、物理成績y進行分析.下面是該生7次考試的成績.
數(shù)學108103137112128120132
物理74718876848186
(Ⅰ)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的說明;
(Ⅱ)已知該生的物理成績y與數(shù)學成績x是線性相關的,求物理成績y與數(shù)學成績x的回歸直線方程
(Ⅲ)若該生的物理成績達到90分,請你估計他的數(shù)學成績大約是多少?
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)g(x)=ex(x+1).
(1)求函數(shù)g(x)在(0,1)處的切線方程;
(2)設x>0,討論函數(shù)h(x)=g(x)-a(x3+x2)(a>0)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{(a+3)^{2}}$=1(a>0)的一條漸近線方程為y=2x,則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1,A2的三點,直線QA1,QA2,OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( 。
A.14B.12C.9D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在平面直角坐標系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以O為極點,x軸的非負半軸為極軸且取相同的單位長度建立極坐標系.
(1)求圓C的極坐標方程;
(2)若直線l的極坐標方程是$2ρsin({θ+\frac{π}{3}})=3\sqrt{3}$,射線$OM:θ=\frac{π}{3}$與圓C的交點為O、P,與直線l的交點為Q.求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在平面直角坐標系xOy中,橢圓Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=2上的點和橢圓Ω上的點的距離的最小值為1.
(Ⅰ) 求橢圓Ω的方程;
(Ⅱ) 已知橢圓Ω的上頂點為A,點B,C是Ω上的不同于A的兩點,且點B,C關于原點對稱,直線AB,AC分別交直線l于點E,F(xiàn).記直線AC與AB的斜率分別為k1,k2
①求證:k1•k2為定值;
②求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.我國南北朝時代的數(shù)學家祖暅提出體積的計算原理(組暅原理):“冪勢既同,則積不容異”.“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積總相等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標系中,圖1是一個形狀不規(guī)則的封閉圖形,圖2是一個上底長為1、下底長為2的梯形,且當實數(shù)t取[0,3]上的任意值時,直線y=t被圖1和圖2所截得的兩線段長總相等,則圖1的面積為( 。
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

同步練習冊答案