12.命題p:若對任意的x∈[1,2],不等式x2-ax+1>0恒成立;
命題q:函數(shù)f(x)=$\frac{x+a}{x-1}$在(1,+∞)上單調(diào)遞減.若命題p∧q為假.
求實數(shù)a的取值范圍.

分析 先求出命題p和命題q為真時,實數(shù)a的取值范圍,進而可得命題p∧q為假時,實數(shù)a的取值范圍.

解答 解:$p:a<x+\frac{1}{x}$
∵${(x+\frac{1}{x})_{min}}=2∴a<2$…(3分)
$q:f(x)=\frac{x+a}{x-1}=1+\frac{a+1}{x-1}$
∵f(x)在(1,+∞)上單調(diào)遞減
∴a+1>0
即:∴a>-1…(6分)
當p∧q為真命題時,
$\left\{\begin{array}{l}a<2\\ a>-1\end{array}\right.$
∴-1<a<2…(10分)
∴當p∧q為假命題時a≥2或a≤-1…(12分)

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,恒成立問題,反比例型函數(shù)的單調(diào)性,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={1,2},B={2,3},U={1,2,3,4},則A∪(∁UB)=( 。
A.{1,2,3}B.{1,2,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量|$\vec a$|=5,|$\vec b$|=4,若$\vec a$與$\vec b$的夾角為120°,則向量$\vec b$在向量$\vec a$方向上的投影為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(1)求函數(shù)y=f(x)在x∈[0,$\frac{π}{2}}$]時的值域;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足c=2,a=3,f(B)=0,求邊b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x|x2-4x+3<0},B={y|y=2x-1,x≥0},則A∩B=( 。
A.B.[0,1)∪(3,+∞)C.AD.B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=lnx在點P(x0,f(x0))處的切線l與函數(shù)g(x)=ex的圖象也相切,則滿足條件的切點P的個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$-$\overrightarrow$=(${\sqrt{3}$,$\sqrt{2}}$),則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$2\sqrt{2}$B.$2\sqrt{5}$C.$\sqrt{17}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設函數(shù)f(x)=$\left\{\begin{array}{l}m+{x^2}\;\;,\;\;|x|≥1\\ x\;\;\;,\;\;\;\;|x|<1\end{array}$的圖象過點(1,1),函數(shù)g(x)是二次函數(shù),若函數(shù)f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是(  )
A.(-∞,1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|+|2x+1|
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)判斷f(x)的奇偶性
(Ⅲ)根據(jù)圖象填空:求f(x)的最小值.

查看答案和解析>>

同步練習冊答案