3.已知向量|$\vec a$|=5,|$\vec b$|=4,若$\vec a$與$\vec b$的夾角為120°,則向量$\vec b$在向量$\vec a$方向上的投影為-2.

分析 由條件及投影的計算公式便可得出向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的投影為$|\overrightarrow|cos120°=4cos120°$,從而得出該投影的值.

解答 解:根據(jù)條件,$\overrightarrow$在$\overrightarrow{a}$方向上的投影為:
$|\overrightarrow|cos<\overrightarrow{a},\overrightarrow>$=4cos120°=-2.
故答案為:-2.

點評 考查一個向量在另一個向量方向上的投影的定義及計算公式,向量夾角的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=1,anan+1=2n(n∈N*),則a9+a10的值為(  )
A.34B.22C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=2x-2-x,a=($\frac{7}{9}$)${\;}^{-\frac{1}{2}}}$,b=($\frac{7}{9}$)${\;}^{\frac{1}{2}}}$,c=log2$\frac{7}{9}$,則f(a),f(b),f(c)的大小順序為( 。
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知正方形ABCD的邊長為1,點E是AB邊上的動點,則$\overrightarrow{DE}$•$\overrightarrow{DC}$的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某班甲、乙兩名學(xué)生的高考備考成績的莖葉圖如圖所示,分別求兩名學(xué)生成績的中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩∁UA;
(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)滿足:f(3x+y)=3f(x)+f(y)對任意的x,y∈R均成立,且當(dāng)x>0時,f(x)<0.
(1)求證:f(4x)=4f(x),f(3x)=3f(x);
(2)判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.命題p:若對任意的x∈[1,2],不等式x2-ax+1>0恒成立;
命題q:函數(shù)f(x)=$\frac{x+a}{x-1}$在(1,+∞)上單調(diào)遞減.若命題p∧q為假.
求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(2-2a)>f(a),則實數(shù)a的取值范圍是(  )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-∞,$\frac{2}{3}$)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案