【題目】游樂場推出了一項(xiàng)趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時(shí),記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
【答案】解:(Ⅰ)兩次記錄的數(shù)為:
(1,1),(1,2),(1,3),(1,4),
(2,2),(2,3),(2,4),(3,4),
(2,1),(3,1),(4,1),(3,2),
(3,3),(4,2),(4,3),(4,4),共16個,
滿足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5個,
∴小亮獲得玩具的概率為 ;
(Ⅱ)滿足xy≥8,
(2,4),(3,4),(4,2),
(4,3),(3,3),(4,4)共6個,
∴小亮獲得水杯的概率為 ;
小亮獲得飲料的概率為1﹣ ﹣ = ,
∴小亮獲得水杯大于獲得飲料的概率.
【解析】(1)用列舉法表示出所有兩次紀(jì)錄的結(jié)果,選出滿足xy≤3的結(jié)果,即可得到獲得玩具時(shí)的概率,(2)選出滿足xy≥8的結(jié)果,即可得到獲得水杯的概率,從而得到獲得飲料的概率,即可判斷出小亮獲得水杯大于獲得飲料的概率.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解幾何概型(幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列{an},定義Hn= 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”Hn=2n+1 , 記數(shù)列{an﹣kn}的前n項(xiàng)和為Sn , 若Sn≤S5對任意的n(n∈N*)恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( )
A.函數(shù)f(x)的最小正周期為
B.直線x=﹣ 是函數(shù)f(x)圖象的一條對稱軸
C.函數(shù)f(x)在區(qū)間[﹣ , ]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y= sin2x+cos2x的圖象,只需將函數(shù)y=2sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 令an=lgxn , 則a1+a2+…+a99的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x),g(x)滿足 f(x)g(x)dx=0,則f(x),g(x)為區(qū)間[﹣1,1]上的一組正交函數(shù),給出三組函數(shù): ①f(x)=sin x,g(x)=cos x;
②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2 ,
其中為區(qū)間[﹣1,1]上的正交函數(shù)的組數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直長軸的弦長為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作直線交拋物線y2=2x于A、B兩點(diǎn),求證:OA⊥OB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com