16.如圖,已知在等腰梯形ABCD中,AB=4,AB∥CD,∠BAD=45°,E,F(xiàn),G分別是AB,BC,CD的中點,若$\overrightarrow{EF}$在$\overrightarrow{AG}$方向上的投影為$\frac{7}{10}\sqrt{4+\frac{1}{2}A{D^2}}$,則$\frac{{|\overrightarrow{AB}|}}{{|\overrightarrow{CD}|}}$=( 。
A.1B.2C.3D.4

分析 由題意建立平面直角坐標系,從而利用平面向量的坐標表示化簡即可.

解答 解:建立如右圖所示的平面直角坐標系,

∵,∠BAD=45°,∴設(shè)D(x,x),(x>0),
則C(4-x,x),G(2,x),E(2,0),F(xiàn)($\frac{8-x}{2}$,$\frac{x}{2}$),
故$\overrightarrow{EF}$=(2-$\frac{x}{2}$,$\frac{x}{2}$),
所以$\overrightarrow{EF}$在$\overrightarrow{AG}$方向上的投影為
$\frac{\overrightarrow{EF}•\overrightarrow{AG}}{|\overrightarrow{AG}|}$=$\frac{2(2-\frac{x}{2})+x\frac{x}{2}}{\sqrt{4+{x}^{2}}}$=$\frac{7}{10}\sqrt{4+\frac{1}{2}A{D^2}}$,
即$\frac{2(2-\frac{x}{2})+x\frac{x}{2}}{\sqrt{4+{x}^{2}}}$=$\frac{7}{10}$$\sqrt{4+\frac{1}{2}({x}^{2}+{x}^{2})}$,
解得,x=1;
故CD=4-2=2,
故$\frac{{|\overrightarrow{AB}|}}{{|\overrightarrow{CD}|}}$=2,
故選:B.

點評 本題考查了平面向量的坐標運算、平面向量的投影等基礎(chǔ)知識,同時考查了坐標法、方程思想的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點.
(1)當a=2b,點P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2時,求雙曲線方程.
(2)已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1具有如下性質(zhì),若x=t交雙曲線于P,Q,A1,A2為雙曲線頂點,則A1P,A2Q交點的軌跡是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1.
試對橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1寫出具有類似特征的性質(zhì),并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知A、B分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右頂點,離心率為$\frac{1}{2}$,右焦點與拋物線y2=4x的焦點F重合.
(1)求橢圓C的方程;
(2)已知點P是橢圓C上異于A、B的動點,直線l過點A且垂直于x軸,若過F作直線FQ垂直于AP,并交直線l于點Q,證明:Q、P、B三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且橢圓上的點到右焦點F的最大距離為3
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點F的直線l交橢圓C于A,B兩點,定點G(4,0),求△ABG面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,焦距為$4\sqrt{2}$,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點.
(Ⅰ)求C1與C2的標準方程;
(Ⅱ)C1上不同于F的兩點P,Q滿足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,且直線PQ與C2相切,求△FPQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.記min|a,b|為a、b兩數(shù)的最小值,當正數(shù)x,y變化時,令t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,則t的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足關(guān)系$z•\overline{z}$=1,則z對應(yīng)的復(fù)平面的點的軌跡是( 。
A.B.橢圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,在邊長為2的正方形ABCD中,點Q邊CD上一個動點,$\overrightarrow{CQ}$=λ$\overrightarrow{QD}$,點P為線段BQ(含端點)上一個動點,若λ=1,則$\overrightarrow{PA}$•$\overrightarrow{PD}$的取值范圍為[$\frac{4}{5}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx+a.
(1)若函數(shù)y=f(x)在x=e處的切線方程為y=2x,求實數(shù)a的值;
(2)設(shè)m>0,當x∈[m,2m]時,求f(x)的最小值;
(3)求證:${?_n}∈{N_+},{e^{1+\frac{1}{n}}}>{(1+\frac{1}{n})^e}$.

查看答案和解析>>

同步練習冊答案