1.記min|a,b|為a、b兩數(shù)的最小值,當(dāng)正數(shù)x,y變化時(shí),令t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,則t的最大值為$\sqrt{2}$.

分析 由新定義可得t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),由兩式相乘,結(jié)合重要不等式,可得t的最大值.

解答 解:由t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,可得
t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),
即有t2≤$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$,
由$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$=$\frac{2(2xy+{y}^{2})}{{x}^{2}+2{y}^{2}}$≤$\frac{2({x}^{2}+{y}^{2}+{y}^{2})}{{x}^{2}+2{y}^{2}}$=2,
可得t2≤2,解得0<t≤$\sqrt{2}$.
可得t的最大值為$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,考查最值的求法,注意運(yùn)用不等式的性質(zhì)和基本不等式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=2,經(jīng)過雙曲線的右焦點(diǎn)F且斜率為$\frac{\sqrt{15}}{3}$的直線交雙曲線于A,B兩點(diǎn),若|AB|=12,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=$\frac{5}{3}$.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足四邊形MF1NF2是平行四邊形,直線l∥MN,且與C1交于A、B兩點(diǎn),若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{2}}{2}$,M(x0,y0)是橢圓上的任一點(diǎn),從原點(diǎn)O向圓M:(x-x02+(y-y02=2作兩條切線,分別交橢圓于點(diǎn)P,Q.
(Ⅰ)若過點(diǎn)(0,-b),(a,0)的直線與原點(diǎn)的距離為$\sqrt{2}$,求橢圓方程;
(Ⅱ)在(Ⅰ)的條件下,若直線OP,OQ的斜率存在,并記為k1,k2.試問k1k2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知在等腰梯形ABCD中,AB=4,AB∥CD,∠BAD=45°,E,F(xiàn),G分別是AB,BC,CD的中點(diǎn),若$\overrightarrow{EF}$在$\overrightarrow{AG}$方向上的投影為$\frac{7}{10}\sqrt{4+\frac{1}{2}A{D^2}}$,則$\frac{{|\overrightarrow{AB}|}}{{|\overrightarrow{CD}|}}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C1:y2=4x的焦點(diǎn)F恰好是橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),且兩條曲線C1與C2交點(diǎn)的連線過點(diǎn)F,則橢圓C2的長軸長等于( 。
A.$\sqrt{2}$+1B.2C.2$\sqrt{2}$+2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an},{bn}滿足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*),則b2015+b2016=-3•22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等比數(shù)列{an}中,a2=2,且$\frac{1}{a_1}+\frac{1}{a_3}=\frac{5}{4}$,則a1+a3的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,$tan(α-β)=-\frac{1}{3}$,則tanβ=3;$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{6}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案