【題目】如圖,島、相距海里.上午9點整有一客輪在島的北偏西且距島 海里的處,沿直線方向勻速開往島,在島停留分鐘后前往市.上午測得客輪位于島的北偏西且距島 海里的處,此時小張從島乘坐速度為海里/小時的小艇沿直線方向前往島換乘客輪去市.
(Ⅰ)若,問小張能否乘上這班客輪?
(Ⅱ)現(xiàn)測得, .已知速度為海里/小時()的小艇每小時的總費用為()元,若小張由島直接乘小艇去市,則至少需要多少費用?
【答案】(Ⅰ)若小張9點半出發(fā),則無法乘上這班客輪;(Ⅱ)若小張由島直接乘小艇去市,其費用至少需元.
【解析】試題分析:(Ⅰ)在中,由余弦定理得,進而得客輪的航行速度,在中,由余弦定理得,分別求出客輪和小張到島所用的時間,比較即可;
(Ⅱ)根據(jù)條件求得,再由正弦定理得, ,求得,進而求得總費用為,利用基本不等式求最值即可.
試題解析:
(Ⅰ)如圖,根據(jù)題意得:
, , , .
在中,由余弦定理得,
,
所以客輪的航行速度(海里/小時).
因為,所以,
所以.
在中,由余弦定理得, ,
整理得: ,
解得或(不合舍去).
所以客輪從處到島所用的時間小時,
小張到島所用的時間至少為小時.
由于,
所以若小張9點半出發(fā),則無法乘上這班客輪.
(Ⅱ)在中, , ,
所以為銳角, , .
所以
.
由正弦定理得, ,
所以,
所以小張由島直接乘小艇去城市的總費用為
(),
當且僅當,即時, (元).
所以若小張由島直接乘小艇去市,其費用至少需元.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當時, ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班為了活躍元旦晚會氣氛,主持人請12位同學做一個游戲,第一輪游戲中,主持人將標有數(shù)字1到12的十二張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字7到12的卡片的同學留下,其余的淘汰;第二輪將標有數(shù)字1到6的六張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字4到6的卡片的同學留下,其余的淘汰;第三輪將標有數(shù)字1,2,3的三張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字2,3的卡片的同學留下,其余的淘汰;第四輪用同樣的辦法淘汰一位同學,最后留下的這位同學獲得一個獎品.已知同學甲參加了該游戲.
(1)求甲獲得獎品的概率;
(2)設(shè)為甲參加游戲的輪數(shù),求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨商場舉行年終慶典,推出以下兩種優(yōu)惠方案:
方案一:單筆消費每滿200元立減50元,可累計;
方案二:單筆消費滿200元可參與一次抽獎活動,抽獎規(guī)則如下:從裝有6個小球(其中3個紅球3個白球,它們除顏色外完全相同)的盒子中隨機摸出3個小球,若摸到3個紅球則按原價的5折付款,若摸到2個紅球則按原價的7折付款,若摸到1個紅球則按原價的8折付款,若未摸到紅球按原價的9折付款。
單筆消費不低于200元的顧客可從中任選一種優(yōu)惠方案。
(I)某顧客購買一件300元的商品,若他選擇優(yōu)惠方案二,求該顧客最好終支付金額不超過250元的概率。
(II)若某顧客的購物金額為210元,請用所學概率知識分析他選擇哪一種優(yōu)惠方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù),且)滿足條件:,且方程有兩個相等實根.
(1)求的解析式;
(2)是否存在實數(shù),使的定義域和值域分別為和?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其圖象在點處切線的斜率為-3.
(1)求與關(guān)系式;
(2)求函數(shù)的單調(diào)區(qū)間(用只含有的式子表示);
(3)當時,令,設(shè)是函數(shù)的兩個零點, 是與的等差中項,求證: (為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com