13.在△ABC中,角A,B,C對(duì)邊分別為a,b,c,且btanA,ctanB,btanB成等差數(shù)列.
(1)求角A;
(2)若a=2,試判斷當(dāng)bc取最大值時(shí)△ABC的形狀,并說(shuō)明理由.

分析 (1)由btanA,ctanB,btanB成等差數(shù)列,可得2ctanB=btanA+btanB,利用正弦定理化為cosA=$\frac{1}{2}$,由A∈(0,π),即可得出A=$\frac{π}{3}$;
(2)由余弦定理結(jié)合基本不等式得答案.

解答 解:(1)∵btanA,ctanB,btanB成等差數(shù)列,
∴2ctanB=btanA+btanB,
∴2sinC•$\frac{sinB}{cosB}$=sinB•$\frac{sinA}{cosA}$+sinB•$\frac{sinB}{cosB}$,
化為sinAcosB+cosAsinB=2sinCcosA,
∴sinC=2sinCcosA,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$;
(2)由a2=b2+c2-2bc•cosA,
得$4=^{2}+{c}^{2}-2bc•cos\frac{π}{3}=^{2}+{c}^{2}-2bc•\frac{1}{2}$=b2+c2-bc≥bc,
當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),此時(shí)△ABC為等邊三角形.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)、正弦定理、余弦定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-m|(m>0).
(1)若f(x)≥5恒成立,求m的取值范圍;
(2)在(1)的條件下,記m的最小值是m0,若$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+$\frac{9}{{c}^{2}}$=m0,則當(dāng)a,b,c取何值時(shí),a2+4b2+9c2取得最小值,并求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐V-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其他四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為$\sqrt{5}$的等腰三角形,M為VC邊中點(diǎn).
(1)求證:VA∥平面BDM;
(2)試畫(huà)出二面角V-AB-C的平面角,并求它的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-x+alnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若?x0∈[1,e],使得f(x0)-(1+a)x0≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+x-2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a}{x-1}$+lnx-1,a∈(0,+∞).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x=t為函數(shù)f(x)的極小值點(diǎn),證明:f(t)<$\frac{1}{2}$t-$\frac{3}{2t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|1<x<10,x∈N}.B={x|x=$\sqrt{n}$,n∈A}.則A∩B=(  )
A.{1,2,3}B.{x|1<x<3}C.{2,3}D.{x|1<x<$\sqrt{10}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1),則($\overrightarrow a$+$\overrightarrow b$)•($\overrightarrow a$-2$\overrightarrow b$)=( 。
A.2B.-2C.-3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知正三棱錐的體積為9$\sqrt{3}$cm3,高為3cm.則它的全面積為27$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案