【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是(
A.
B.
C.
D.

【答案】D
【解析】解:連結(jié)BC1 , ∵AC∥A1C1 , ∴∠C1A1B是異面直線A1B與AC所成角(或所成角的補(bǔ)角),
∵在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,
∴AB= , ,BC1= = ,A1C1=1,
∴cos∠C1A1B= = = ,
∴異面直線A1B與AC所成角的余弦值為
故選:D.

由AC∥A1C1 , 知∠C1A1B是異面直線A1B與AC所成角(或所成角的補(bǔ)角),由此能求出異面直線A1B與AC所成角的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列{an}的前項(xiàng)n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=eax﹣x﹣1,其中a≠0.若對一切x∈R,f(x)≥0恒成立,則a的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)分別為A(2,4),B(1,﹣3),C(﹣2,1).
(1)求BC邊上的高所在的直線方程;
(2)設(shè)AC中點(diǎn)為D,求△DBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=9,直線l:x﹣my+m﹣2=0,且直線l與圓C相交于A、B兩點(diǎn). (Ⅰ)若|AB|=4 ,求直線l的傾斜角;
(Ⅱ)若點(diǎn)P(2,1)滿足 = ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y.
(1)求x+y能被3整除的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,PA⊥AD,PA=AD,則異面直線PB與AC所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱AB,CC1的中點(diǎn),在平面ADD1A1內(nèi)且與平面D1EF平行的直線(
A.有無數(shù)條
B.有2條
C.有1條
D.不存在

查看答案和解析>>

同步練習(xí)冊答案