13.已知點(diǎn)M(0,-2),點(diǎn)N在直線x-y-1=0上,若直線MN垂直于直線x+2y-3=0,則N點(diǎn)的坐標(biāo)是( 。
A.(-2,-3)B.(1,0)C.(2,3)D.(-1,0)

分析 根據(jù)點(diǎn)N在直線x-y-1=0上,設(shè)點(diǎn)N坐標(biāo)為(x0,x0-1),利用經(jīng)過兩點(diǎn)的斜率公式,得到直線MN的斜率關(guān)于x0的表達(dá)式,最后根據(jù)直線MN垂直于直線x+2y-3=0,得到兩直線斜率乘積等于-1,建立等式并解之可得點(diǎn)N的坐標(biāo).

解答 解:∵點(diǎn)N在直線x-y-1=0上,
∴可設(shè)點(diǎn)N坐標(biāo)為(x0,x0-1),
根據(jù)經(jīng)過兩點(diǎn)的直線的斜率公式,可得kMN=$\frac{-2-({x}_{0}-1)}{0-{x}_{0}}$=$\frac{{x}_{0}+1}{{x}_{0}}$,
∵直線MN垂直于直線x+2y-3=0,而直線x+2y-3=0的斜率為-$\frac{1}{2}$,
∴$\frac{{x}_{0}+1}{{x}_{0}}$•(-$\frac{1}{2}$)=-1,
解得x0=1,
因此,點(diǎn)N的坐標(biāo)是(1,0),
故選B.

點(diǎn)評(píng) 本題借助于直線與垂直,求點(diǎn)的坐標(biāo)為例,著重考查了直線的方程、直線斜率的求法和直線垂直的斜率關(guān)系等知識(shí)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x<a},B={x|1<x<2},B⊆A,則實(shí)數(shù)a的取值范圍是( 。
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=3|x+1|的單調(diào)遞減區(qū)間是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定義域是( 。
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列關(guān)于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)P(1,0),且圓心為直線x+y-1=0與直線x-y+1=0交點(diǎn),則該圓標(biāo)準(zhǔn)方程為x2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{{\sqrt{4-{2^x}}}}$定義域?yàn)椋ā 。?table class="qanwser">A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓的一個(gè)頂點(diǎn)為A(0,-$\sqrt{2}$),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)P是橢圓上的點(diǎn),且以點(diǎn)P及兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形面積等于1,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=0.2x的圖象經(jīng)過點(diǎn)( 。
A.(0,1)B.(1,0)C.(1,1)D.(0,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案