10.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9,則其通項(xiàng)an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

分析 當(dāng)n=1時(shí),a1=Sn;當(dāng)n≥2時(shí),an=Sn-Sn-1

解答 解:∵Sn=n2-9,
∴當(dāng)n=1時(shí),a1=1-9=-8,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(n2-9)-[(n-1)2-9]=2n-1,
∴an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

點(diǎn)評 本題考查了數(shù)列的通項(xiàng)公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)當(dāng)a=2時(shí),求A∩B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定義域是( 。
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)P(1,0),且圓心為直線x+y-1=0與直線x-y+1=0交點(diǎn),則該圓標(biāo)準(zhǔn)方程為x2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{{\sqrt{4-{2^x}}}}$定義域?yàn)椋ā 。?table class="qanwser">A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若f(2)=1,解不等式f(x2+3x)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓的一個(gè)頂點(diǎn)為A(0,-$\sqrt{2}$),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離為3
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)P是橢圓上的點(diǎn),且以點(diǎn)P及兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形面積等于1,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求證:方程f(x)=0必有兩個(gè)不等實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M(1,$\sqrt{3}$).
(1)求圓C的方程;
(2)若點(diǎn)P是圓C上的動(dòng)點(diǎn),求點(diǎn)P到直線x+y-4=0的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案