分析 (1)求出函數(shù)的定義域,函數(shù)的導(dǎo)數(shù),極值點(diǎn),判斷函數(shù)的單調(diào)性,求出函數(shù)的最小值,列出方程求解即可.
(2)利用函數(shù)的單調(diào)性的定義,構(gòu)造函數(shù)利用導(dǎo)函數(shù)的符號(hào),求解即可.
(3)推出$\frac{m}{x}=x-lnx(x≥1)$,通過圖象知m≥1時(shí)有一個(gè)根,m<1時(shí)無根,或利用函數(shù)的最值判斷求解即可.
解答 解:(1)f(x)的定義域?yàn)椋?a,+∞).f′(x)=1-$\frac{1}{x+a}$=$\frac{x+a-1}{x+a}$.
由f′(x)=0,解得x=1-a>-a.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-a,1-a) | 1-a | (1-a,+∞) |
f′(x) | - | 0 | + |
f(x) | 減函數(shù) | 極小值 | 增函數(shù) |
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,考查函數(shù)的最值的求法,考查分類討論思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:5:6 | B. | 6:5:1 | C. | 6:1:5 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值為4且關(guān)于直線$x=-\frac{π}{2}$對(duì)稱 | |
B. | 最大值為4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上單調(diào)遞增 | |
C. | 最大值為2且關(guān)于點(diǎn)$({-\frac{π}{2}\;\;,\;\;0})$中心對(duì)稱 | |
D. | 最大值為2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上單調(diào)遞減 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com