【題目】已知拋物線:.
(Ⅰ)、是拋物線上不同于頂點的兩點,若以為直徑的圓經過拋物線的頂點,試證明直線必過定點,并求出該定點的坐標;
(Ⅱ)在(Ⅰ)的條件下,拋物線在、處的切線相交于點,求面積的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點為,,且過點,直線交曲線于,兩點,為坐標原點.
(1)求橢圓的標準方程;
(2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;
(3)若直線過點,求面積的最大值,以及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在點處的切線與直線平行.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設.
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當時,判斷函數(shù)有幾個零點,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖給出的是某高校土木工程系大四年級55名學生期末考試專業(yè)成績的頻率分布折線圖(連接頻率分布直方圖中各小長方形上端的中點),其中組距為10,且本次考試中最低分為50分,最高分為100分.根據(jù)圖中所提供的信息,則下列結論中正確的是( )
A. 成績是75分的人數(shù)有20人
B. 成績是100分的人數(shù)比成績是50分的人數(shù)多
C. 成績落在70-90分的人數(shù)有35人
D. 成績落在75-85分的人數(shù)有35人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在下列四個幾何體中,它們的三視圖(主視圖、左視圖、俯視圖)中有且僅有兩個相同,而另一個不同的幾何體是( )
(1)棱長為1的正方體
(2)底面直徑和高均為1的圓柱
(3)底面直徑和高均為1的圓錐
(4)底面邊長為1、高為2的正四棱柱
A.(2)(3)(4)B.(1)(2)(3)
C.(1)(3)(4)D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】軍訓時,甲、乙兩名同學進行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.數(shù)學老師將甲、乙兩名同學的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個結論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個結論中,正確結論的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐的底面為直角梯形,,,底面,且,,是的中點.
(1)證明:面面;
(2)求與夾角的余弦值;
(3)求面與面所成二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從10種不同的作物種子中選出6種分別放入6個不同的瓶子中,每瓶不空,如果甲、乙兩種種子都不許放入第一號瓶子內,那么不同的放法共有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線:的左、右焦點分別為、,為坐標原點,是雙曲線在第一象限上的點,直線交雙曲線左支于點,直線 交雙曲線右支于點,若,且,則雙曲線的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com