1.設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)f′(x)且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A.函數(shù)f(x)有極大值f(-2)和極小值f(2)B.函數(shù)f(x)有極大值f(-2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(-2)D.函數(shù)f(x)有極大值f(2)和極小值f(1)

分析 結(jié)合函數(shù)圖形,對x分區(qū)間討論f(x)與0大小關(guān)系,從而推導(dǎo)出f(x)在區(qū)間上的單調(diào)性即可;

解答 解:由圖形推導(dǎo)可知:
當(dāng)x<-2時,y>0,1-x>0⇒f'(x)>0,故f(x)在(-∞,-2)上單調(diào)遞增;
當(dāng)-2<x<1時:y<0,1-x>0⇒f'(x)<0,故f(x)在(-2,1)上單調(diào)遞減;
當(dāng)1<x<2時:y>0,1-x<0⇒f'(x)<0,故f(x)在(1,2)上單調(diào)遞減;
當(dāng)x>2時:y<0,1-x<0⇒f'(x)>0,故f(x)在(2,+∞)上單調(diào)遞增;
故函數(shù)f(x)在x=-2時取得極大值,在x=2時取得極小值;
故選:A.

點評 本題主要考查了導(dǎo)函數(shù)與原函數(shù)圖形的關(guān)系,以及數(shù)學(xué)結(jié)合與分析推理等知識點,屬中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點P在圓C1:x2+y2-8x-4y+11=0上,點Q在C2:x2+y2+4x+2y+1=0上,則|PQ|的最小值是3$\sqrt{5}$-3-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知曲線C的極坐標(biāo)方程是ρ=2,以極點為原點,以極軸為x軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}$(t為參數(shù)).
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}$得到曲線C′,曲線C′上任一點為M(x0,y0),求$\sqrt{3}{x}_{0}$+$\frac{1}{2}{y}_{0}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬P-ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點E是PC的中點,連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,請說明理由;
(3)記陽馬P-ABCD的體積為V1,四面體EBCD的體積為V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)點P(x,y),則“x=-2且y=1”是“點P在直線l:x+y+1=0上”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.若命題p,¬q都是真命題,則命題“p∧q”為真命題
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0”
C.“x=-1”是“x2-5x-6=0”的必要不充分條件
D.命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知|$\overrightarrow a|$=2,|$\overrightarrow b$|=1,$(\overrightarrow a-\overrightarrow b)•\overrightarrow b=0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,是某班50名學(xué)生身高的頻率分布直方圖,那么身高在區(qū)間[150,170)內(nèi)的學(xué)生人數(shù)為( 。
A.16B.20C.22D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.Sn是等差數(shù)列{an}的前n項和,如果a1+a5=6,那么S5的值是(  )
A.10B.15C.25D.30

查看答案和解析>>

同步練習(xí)冊答案