【題目】在正方體ABCD-A1B1C1D1中,M、N分別為棱BC和棱CC1的中點(diǎn),則異面直線AC和MN所成的角為( )
A. 30° B. 45° C. 90° D. 60°
【答案】D
【解析】
以D為原點(diǎn),DA,DC,DD1 分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AC和MN所成的角.
以D為原點(diǎn),DA,DC,DD1 分別為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,
∵M(jìn)、N分別為棱BC和棱CC1的中點(diǎn),
∴M(1,2,0),N(0,2,1),A(2,0,0),C(0,2,0),
=(﹣1,0,1),=(﹣2,2,0),
設(shè)異面直線AC和MN所成的角為θ,
則cosθ=== , 0<θ< ∴θ=60°.
∴異面直線AC和MN所成的角為60°.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=是定義在[-l,1]上的奇函數(shù),且f()=。
(1)確定函數(shù)f(x)的解析式;
(2)判斷并用定義證明f(x)在(-1,1)上的單調(diào)性;
(3)若f(1-3m)+f(1+m)≥0,求實(shí)數(shù)m的所有可能的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)判斷在定義域上的單調(diào)性并加以證明;
(Ⅲ)若對于任意的,不等式恒成立, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半徑為2的球O內(nèi)有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時(shí),球的表面積與該四棱柱的側(cè)面積之差是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和最小值;
(2)若函數(shù)在上的最小值為,求的值;
(3)若,且對任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mlnx﹣x2+2(m∈R).
(1)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=1時(shí)取得極大值,求證:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,當(dāng)x≥1時(shí),恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為元.旅行團(tuán)中的每個人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過人時(shí),飛機(jī)票每張收費(fèi)元;若旅行團(tuán)的人數(shù)多于人時(shí),則予以優(yōu)惠,每多人,每個人的機(jī)票費(fèi)減少元,但旅行團(tuán)的人數(shù)最多不超過人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格元,旅行社的利潤為元.
(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( )
A. 對于線性回歸方程,直線必經(jīng)過點(diǎn)
B. 莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C. 將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D. 擲一枚均勻硬幣出現(xiàn)正面向上的概率是,那么一枚硬幣投擲2次一定出現(xiàn)正面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的標(biāo)準(zhǔn)方程是.
(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)直線過已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為,求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com