已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上有零點,求的最大值.
(Ⅰ)增區(qū)間:和,減區(qū)間:;(Ⅱ)2
解析試題分析:(Ⅰ)求導(dǎo)函數(shù),求的解集,再和定義域求交集,即得函數(shù)的遞增區(qū)間;求的解集,再和定義域求交集,即得函數(shù)的遞減區(qū)間;(Ⅱ)可先利用導(dǎo)數(shù)求其極值點,然后判斷函數(shù)大致圖象,使得圖象與軸在內(nèi)有交點,由(Ⅰ)可知函數(shù)的單調(diào)區(qū)間和極值點,,,且時,可判斷零點在區(qū)間內(nèi),又因為,當若,則,不滿足條件,又因為,可從負整數(shù)中的最大值-1開始逐個檢驗,直到找到滿足條件的的值為止.
試題解析:(Ⅰ),時,時,∴增區(qū)間: 和,減區(qū)間:;
(Ⅱ)由(Ⅰ)知,
且時,故在定義域上存在唯一零點,且.
若,則,,此區(qū)間不存在零點,舍去.
若,時,,,
又為增區(qū)間,此區(qū)間不存在零點,舍去.
時,,,
又為增區(qū)間,且,故.
綜上
考點:1、導(dǎo)數(shù)在函數(shù)單調(diào)性上的應(yīng)用;2、函數(shù)的極值;3、函數(shù)的零點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)若函數(shù)在上的圖像與直線恒有兩個不同交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)當時,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中常數(shù)).
(1)當時,求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當時,曲線上總存在相異兩點、,使得曲線
在點、處的切線互相平行,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,若對任意的恒成立,求實數(shù)的值;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,.
(Ⅰ)若的最小值為,試判斷函數(shù)的零點個數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)的值域為.求關(guān)于的不等式的解集;
(Ⅱ)當時,為常數(shù),且,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若對任意的實數(shù),函數(shù)與的圖象在處的切線斜率總相等,求的值;
(2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com