已知函數(shù)在點(diǎn)處的切線方程為
(1)求函數(shù)的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個(gè)自變量的值都有求實(shí)數(shù)c的最小值.
(1) f(x)=x3-3x.  (2) c的最小值為4.

試題分析:(1)f′(x)=3ax2+2bx-3.
根據(jù)題意,得
 解得
所以f(x)=x3-3x. 
(2)令f′(x)=0,即3x2-3=0,得x=±1.
x
-2
(-2,-1)
-1
(-1,1)
1
(1,2)
2
f′(x)
 

 

 

 
f(x)
-2
?
極大值
?
極小值
?
2
因?yàn)閒(-1)=2,f(1)=-2,
所以當(dāng)x∈[-2,2]時(shí),f(x)max=2,f(x)min=-2.
( 需列表格或者說明單調(diào)性,否則扣2分)
則對于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
所以c≥4.即c的最小值為4.
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,首先利用待定系數(shù)法,求得函數(shù)解析式,為進(jìn)一步解題奠定了基礎(chǔ)。利用“表解法”寫出函數(shù)單調(diào)性、極值,直觀明了。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一塊邊長為36的正三角形鐵皮,從它的三個(gè)角剪下三個(gè)全等的四邊形后做成一個(gè)無蓋的正三棱柱容器,如左下圖示,則這個(gè)容器的最大容積是(   )
A.288B.292C.864D.876

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù).關(guān)于的方程有解,則實(shí)數(shù)的取值范圍是      _____    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)f(x)列任意的正實(shí)數(shù)x1,x2(x1≠x2),恒有(   )  (x1-x2)( (x1)-f(x2)>0),則一定正確的是
A.f(4)>f(一6)B.f(一4)<f(一6)
C.f(一4)>f(一6)D.f(4)<f(一6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義運(yùn)算:,則函數(shù)的值域?yàn)椋?nbsp; )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的函數(shù),且,,則值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共10分)
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方(沒有公共點(diǎn)),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求上的最大值和最小值;
(3) 當(dāng)時(shí),求證:對大于1的任意正整數(shù),都有。

查看答案和解析>>

同步練習(xí)冊答案