【題目】為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,當(dāng)不處罰時,有80人會闖紅燈,處罰時,得到如表數(shù)據(jù):

處罰金額(單位:元)

5

10

15

20

會闖紅燈的人數(shù)

50

40

20

10

若用表中數(shù)據(jù)所得頻率代替概率.

1)當(dāng)罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?

2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?

【答案】1)降低2

【解析】

1)計算出罰金定為10元時行人闖紅燈的概率,和不進行處罰時行人闖紅燈的概率,求解即可;

2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據(jù)分層抽樣法抽出4人依次排序,計算所求的概率值.

解:(1)當(dāng)罰金定為10元時,行人闖紅燈的概率為;

不進行處罰,行人闖紅燈的概率為;

所以當(dāng)罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低;

2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40

故分別從類市民和類市民各抽出兩人,4人依次排序

類市民中抽取的兩人對應(yīng)的編號為類市民中抽取的兩人編號為

4人依次排序分別為,,,,,,,,共有

前兩位均為類市民排序為,有種,所以前兩位均為類市民的概率是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障全國第四次經(jīng)濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記.由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗.在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

50

個體經(jīng)營戶

50

150

合計

1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;

2)補全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;

3)根據(jù)該試點普查小區(qū)的情況,為保障第四次經(jīng)濟普查的順利進行,請你從統(tǒng)計的角度提出一條建議.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有個小組,甲、乙、丙三人分別在不同的小組.某次數(shù)學(xué)考試成績公布情況如下:甲和三人中等第小組的那位的成績不一樣,丙比三人中第組的那位的成績低,三人中第小組的那位比乙的成績高.若將甲、乙、丙三人按數(shù)學(xué)成績由高到低排列,則正確的排列順序是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)是否存在實數(shù),使得“對任意恒成立”?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本()與月處理量()之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.

1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點P(-4,0)的動直線l與拋物線相交于DE兩點,已知當(dāng)l的斜率為時,.

1)求拋物線C的方程;

2)設(shè)的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),過點且斜率為1的直線與拋物線交于,兩點,且的中點.

1)求拋物線的方程;

2)設(shè)直線軸交點為,若過的直線與拋物線交于,兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,且,求證:;

2)若時,恒有,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)判斷的單調(diào)性;

2)當(dāng)上恒成立時,求的取值范圍;

3)當(dāng)時,求函數(shù)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案