A. | |x1+x2|$\sqrt{1+{k^2}}$ | B. | |x1+x2|$\sqrt{1+\frac{1}{k^2}}$ | C. | |x1-x2|$\sqrt{1+\frac{1}{k^2}}$ | D. | |x1-x2|$\sqrt{1+{k^2}}$ |
分析 分別把兩點(diǎn)的橫坐標(biāo)代入直線方程得到兩點(diǎn)的坐標(biāo),然后利用兩點(diǎn)間的距離公式得答案.
解答 解:∵P、Q在直線y=kx+b上,且其橫坐標(biāo)分別為x1、x2,
則P(x1,kx1+b),Q(x2,kx2+b),
∴|PQ|=$\sqrt{({x}_{1}-{x}_{2})^{2}+(k{x}_{1}+b-k{x}_{2}-b)^{2}}$=$\sqrt{({x}_{1}-{x}_{2})^{2}(1+{k}^{2})}$
=$|{x}_{1}-{x}_{2}|\sqrt{1+{k}^{2}}$.
故選:D.
點(diǎn)評 本題考查了兩點(diǎn)間的距離公式,關(guān)鍵是對公式的記憶,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a2=4,則a=2 | B. | 若a=b,則$\sqrt{a}$=$\sqrt$ | C. | 若$\frac{1}{a}$=$\frac{1}$,則a=b | D. | 若a<b,則a2<b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+3)2+(y+1)2=5 | B. | (x+3)2+(y+1)2=25 | C. | (x-3)2+(y-1)2=5 | D. | (x-3)2+(y-1)2=25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{15}$ | B. | $\frac{2}{5}$ | C. | $\frac{8}{15}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com