7.已知點(diǎn)A(2,3),B(5,4),C(7,10),若點(diǎn)P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),且點(diǎn)P在第三象限,則 λ的取值范圍是(-∞,-1).

分析 設(shè)P(x,y),由點(diǎn)P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),且點(diǎn)P在第三象限,列出不等式組,由此能求出λ的取值范圍.

解答 解:∵A(2,3),B(5,4),C(7,10),
點(diǎn)P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),且點(diǎn)P在第三象限,
∴設(shè)P(x,y),則$\left\{\begin{array}{l}{(x-2,y-3)=(3,1)+λ(5,7)}\\{x<0,y<0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x-2=3+5λ}\\{y-3=1+7λ}\end{array}\right.$,且x<0,y<0,
∴$\left\{\begin{array}{l}{x=5+5λ<0}\\{y=4+7λ<0}\end{array}\right.$,解得λ<-1.
∴λ的取值范圍是(-∞,-1).
故答案為:(-∞,-1).

點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若P(x1,y1)、Q(x2,y2)都在直線y=kx+b上,則|PQ|用k、x1,x2表示為( 。
A.|x1+x2|$\sqrt{1+{k^2}}$B.|x1+x2|$\sqrt{1+\frac{1}{k^2}}$C.|x1-x2|$\sqrt{1+\frac{1}{k^2}}$D.|x1-x2|$\sqrt{1+{k^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U=R,若集合A={x|3x>1},B={x|log3x>0},A∩∁UB=(  )
A.{x|x<0}B.{x|x>1}C.{x|0≤x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,1),若$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$-$\overrightarrow$|,則實(shí)數(shù)m等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列命題正確的有①④.
①若x∈R,則x2∈R
②若x2∈R,則x∈R
③若x1+y1i=x2+y2i(x1,x2,y1,y2∈C),則x1=x2且y1=y2
④若x1=x2且y1=y2,則x1+y1i=x2+y2i(x1,x2,y1,y2∈C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=1,∠BAC=60°,則該三棱錐的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,函數(shù)f(x)=asinax+cosax(a>0)的最小正周期為$\frac{2π}{a}$,在一個最小正周期長的區(qū)間上的圖象與函數(shù)$g(x)=\sqrt{{a^2}+1}$的圖象所圍成的封閉圖形的面積是$\frac{2π}{a}\sqrt{{a}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在某次試驗(yàn)中,有兩個試驗(yàn)數(shù)據(jù)x,y,統(tǒng)計(jì)的結(jié)果如表格.
x12345
y23445
(1)在給出的坐標(biāo)系中畫出x,y的散點(diǎn)圖;

(2)求出y對x的回歸直線方程$\widehaty=\widehatbx+\widehata$,并估計(jì)當(dāng)x為10時(shí)y的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在同一平面直角坐標(biāo)系中經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲線C變?yōu)榍2x′2+8y′2=0,則曲線C的方程為( 。
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

同步練習(xí)冊答案