分析 設(shè)P(x,y),由點(diǎn)P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),且點(diǎn)P在第三象限,列出不等式組,由此能求出λ的取值范圍.
解答 解:∵A(2,3),B(5,4),C(7,10),
點(diǎn)P滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),且點(diǎn)P在第三象限,
∴設(shè)P(x,y),則$\left\{\begin{array}{l}{(x-2,y-3)=(3,1)+λ(5,7)}\\{x<0,y<0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x-2=3+5λ}\\{y-3=1+7λ}\end{array}\right.$,且x<0,y<0,
∴$\left\{\begin{array}{l}{x=5+5λ<0}\\{y=4+7λ<0}\end{array}\right.$,解得λ<-1.
∴λ的取值范圍是(-∞,-1).
故答案為:(-∞,-1).
點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |x1+x2|$\sqrt{1+{k^2}}$ | B. | |x1+x2|$\sqrt{1+\frac{1}{k^2}}$ | C. | |x1-x2|$\sqrt{1+\frac{1}{k^2}}$ | D. | |x1-x2|$\sqrt{1+{k^2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<0} | B. | {x|x>1} | C. | {x|0≤x<1} | D. | {x|0<x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25x2+36y2=0 | B. | 9x2+100y2=0 | C. | 10x+24y=0 | D. | $\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com