【題目】動點與定點的距離和該動點到直線的距離的比是常數(shù)

1)求動點軌跡方程;

2)已知點,問在軸上是否存在一點,使得過點的任一條斜率不為0的弦交曲線兩點,都有

【答案】1;(2)存在,坐標為

【解析】

(1)根據(jù)題意列出點滿足的關系式,再化簡方程即可.

(2),再討論當軸時可得,即若存在定點,則定點坐標為.再討論斜率存在時,的方程為,聯(lián)立橢圓方程,求出韋達定理,證明即可.

1)由題意,知,即.

解得曲線的方程為.

2)法一:設,易知,

①若軸時,由,此時,滿足橢圓方程,

,解得(舍),可知若存在定點,則定點坐標為.

②當直線斜率存在時,設斜率為k,

的方程為,聯(lián)立橢圓方程,

消去,∴.

,∴

,

綜合①②可知,存在點,使得.

2)(解法二)設,易知,設.

不垂直軸,的斜率為,則直線的方程為,

,,

,

即是①,

,得,

代入①式得

化簡,

整理得②,

為使與斜率無關,由②式得出,解得(舍),

這說明軸不垂直時,是過的弦,恒有,

軸時,,是等腰三角形,,

,,,,

可見是等腰直角三角形,,

綜上,過的弦總有.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠A,B兩條生產(chǎn)線生產(chǎn)同款產(chǎn)品,若該產(chǎn)品按照一、二、三等級分類,則每件可分別獲利10元、8元、6元,現(xiàn)從AB生產(chǎn)線的產(chǎn)品中各隨機抽取100件進行檢測,結(jié)果統(tǒng)計如下圖:

I)根據(jù)已知數(shù)據(jù),判斷是否有的把握認為一等級產(chǎn)品與生產(chǎn)線有關?

II)求抽取的200件產(chǎn)品的平均利潤;

III)估計該廠若產(chǎn)量為2000件產(chǎn)品時,一等級產(chǎn)品的利潤.

附:獨立性檢驗臨界值表

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,點為線段的中點,點為線段上靠近的三等分點.現(xiàn)沿進行翻折,得到四棱錐,如圖2,且.在圖2中:

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省為迎接新高考,擬先對考生某選考學科的實際得分進行等級賦分,再按賦分后的分數(shù)從高分到低分劃A、B、C、D、E五個等級,考生實際得分經(jīng)賦分后的分數(shù)在到1之間.在等級賦分科學性論證時,對過去一年全省高考考生的該學科成績重新賦分后進行分析,隨機抽取2000名學生的該學科賦分后的成績,得到如下頻率分布直方圖:(不考慮缺考考生的試卷)

附:若XN(μ,σ2),則P(μσXμσ)0.6826,P(μ2σXμ2σ)0.9544P(μ3σXμ3σ)0.9974,14.59,∑(xi)2pi213

1)求這2000名考生賦分后該學科的平均(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由頻率分布直方圖可以認為,學生經(jīng)過賦分以后的成績X服從正態(tài)分布XN(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2

(i)利用正態(tài)分布,求P(50.41X79.59)

(ii)某市有20000名高三學生,記Y表示這20000名高三學生中賦分后該學科等級為A(即得分大于79.59)的學生數(shù),利用(i)的結(jié)果,求EY.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質(zhì)量等級情況,現(xiàn)隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):

d

等級

三級品

二級品

一級品

特級品

特級品

頻數(shù)

1

m

29

n

7

用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2.

1)估計這批水果中特級品的比例;

2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:

方案A:以6.5/斤收購;

方案B:以級別分裝收購,每袋20個,特級品8/袋,一級品5/袋,二級品4/袋,三級品3/.

用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學共有1000人,其中男生700人,女生300人,為了了解該校學生每周平均體育鍛煉時間的情況以及經(jīng)常進行體育鍛煉的學生是否與性別有關(經(jīng)常進行體育鍛煉是指:周平均體育鍛煉時間不少于4小時),現(xiàn)在用分層抽樣的方法從中收集200位學生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理(

附:,其中.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

A.95%的把握認為該校學生每周平均體育鍛煉時間與性別無關

B.90%的把握認為該校學生每周平均體育鍛煉時間與性別有關

C.90%的把握認為該校學生每周平均體育鍛煉時間與性別無關

D.95%的把握認為該校學生每周平均體育鍛煉時間與性別有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省從2021年開始,高考采用取消文理分科,實行的模式,其中的“1”表示每位學生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學生(其中女生900人).該校為了解高一年級學生對“1”的選課情況,采用分層抽樣的方法抽取了200名學生進行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.

性別

選擇物理

選擇歷史

總計

男生

________

50

女生

30

________

總計

________

________

200

1)求,的值;

2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認為選擇科目與性別有關?說明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001/span>

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(在花卉進行硬枝扦插過程中,常需要用生根粉調(diào)節(jié)植物根系生長.現(xiàn)有20株使用了生根粉的花卉,在對最終花卉存活花卉死亡進行統(tǒng)計的同時,也對在使用生根粉2個小時后的生根量進行了統(tǒng)計,這20株花卉生根量如下表所示,其中生根量在6根以下的視為不足量,大于等于6根為足量”.現(xiàn)對該20株花卉樣本進行統(tǒng)計,其中花卉存活13.已知花卉存活但生根量不足量的植株共1.

編號

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

生根量

6

8

3

8

9

5

6

6

2

7

7

5

9

6

7

8

8

4

6

9

1)完成列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認為花卉的存活生根足量有關?

生根足量

生根不足量

總計

花卉存活

花卉死亡

總計

20

2)若在該樣本生根不足量的植株中隨機抽取3株,求這3株中恰有1花卉存活的概率.

參考數(shù)據(jù):

獨立性檢驗中的,其中.

查看答案和解析>>

同步練習冊答案