分析 (1)令t(x)=x2+2x+a,x∈[-3,3],根據(jù)復(fù)數(shù)函數(shù)的單調(diào)性法則即可求出f(x)的單調(diào)區(qū)間,
(2)根據(jù)函數(shù)的單調(diào)性可知f(x)在x=-1處取得最小值,在x=3取取最大值,先求出a的值,即可求出答案.
解答 解:(1)當(dāng)a>1時,知x2+2x+1>0對任意的x∈[-3,3],
令t(x)=x2+2x+a,x∈[-3,3],
則y=log2t,
且t(x)=(x+1)2+a-1,x∈[-3,3],
∴t(x)在[-3,-1]上為減函數(shù),在(-1,3]為增函數(shù),
∵y=log2t為增函數(shù),
∴f(x)=log2(x2+2x+a)的兩個單調(diào)區(qū)間為[-3,-1],(-1,3],
且f(x)在[-3,-1]為減函數(shù),在(-1,3]為增函數(shù);
(2)由(1)的單調(diào)性知,f(x)在x=-1處取得最小值,在x=3取得最大值,
∴f(x)max=f(3)=log2(a+15)=5,
解得a=17,
∴f(x)min=f(-1)=log216=4.
點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=1-x2 | C. | y=($\frac{1}{10}$)x | D. | y=lgx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com