分析 設(shè)AC=x,根據(jù)三角形的性質(zhì)求出x的范圍,先后在△ABC,△ABD中使用余弦定理得出AD關(guān)于x的函數(shù),根據(jù)x的范圍求出AD的最小值.
解答 解:設(shè)AC=x,則AB=12-2x,
由三角形的性質(zhì)得$\left\{\begin{array}{l}{12-2x+x>6}\\{12-2x-x<6}\\{12-2x≥x}\end{array}\right.$或$\left\{\begin{array}{l}{12-2x+x>6}\\{x-12+2x<6}\\{x≥12-2x}\end{array}\right.$,
解得4≤x<6.
在△ABC中,由余弦定理得cosB=$\frac{(12-2x)^{2}+36-{x}^{2}}{2•(12-2x)•6}$.
在△ABD中,由余弦定理得AD2=(12-2x)2+9-2•3•(12-2x)•cosB=$\frac{5}{2}{x}^{2}$-24x+63=$\frac{5}{2}$(x-$\frac{24}{5}$)2+$\frac{27}{5}$.
∴當(dāng)x=$\frac{24}{5}$時(shí),AD2取得最小值$\frac{27}{5}$.
∴AD的最小值為$\sqrt{\frac{27}{5}}$=$\frac{3\sqrt{15}}{5}$.
故答案為:$\frac{3\sqrt{15}}{5}$.
點(diǎn)評(píng) 本題考查了余弦定理,解三角形的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{2}{3}$)∪($\frac{4}{3}$,+∞) | B. | ($\frac{2}{3}$,$\frac{4}{3}$) | C. | (-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com