7.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(1-2cos2x);
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間.

分析 (1)求函數(shù)的定義域,結(jié)合函數(shù)奇偶性的定義進(jìn)行判斷即可.
(2)根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解即可.

解答 解:(1)由1-2cos2x>0得cos2x<$\frac{1}{2}$,則$\frac{π}{3}$+2kπ<2x<$\frac{5π}{3}$+2kπ,即kπ+$\frac{π}{6}$<x<kπ+$\frac{5π}{6}$,
則定義域關(guān)于原點(diǎn)對(duì)稱,則f(-x)=y=log${\;}_{\frac{1}{2}}$(1-2cos2x)=f(x),
則函數(shù)f(x)是偶函數(shù);
(2)設(shè)t=1-2cos2x,則函數(shù)y=log${\;}_{\frac{1}{2}}$t為減函數(shù),
當(dāng)$\frac{π}{3}$+2kπ<2x≤π+2kπ,即kπ+$\frac{π}{6}$<x≤$\frac{π}{2}$+kπ時(shí),y=cos2x為減函數(shù),y=1-2cos2x為增函數(shù),y=log${\;}_{\frac{1}{2}}$(1-2cos2x)為減函數(shù),即單調(diào)遞減區(qū)間為(kπ+$\frac{π}{6}$,$\frac{π}{2}$+kπ],k∈Z,
當(dāng)π+2kπ≤2x<$\frac{5π}{3}$++2kπ,即$\frac{π}{2}$+kπ≤x<kπ+$\frac{5π}{6}$時(shí),y=cos2x為增函數(shù),y=1-2cos2x為減函數(shù),y=log${\;}_{\frac{1}{2}}$(1-2cos2x)為增函數(shù),即單調(diào)遞增區(qū)間為[$\frac{π}{2}$+kπ,kπ+$\frac{5π}{6}$],k∈Z.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷以及函數(shù)單調(diào)區(qū)間的求解,利用復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{e^x}$-ax(x∈R).
(Ⅰ)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0且x>0時(shí),f(x)≤|lnx|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\int{\;}_0^{\frac{π}{2}}$(sinx-acosx)dx=3,則實(shí)數(shù)a的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某中學(xué)校本課程開設(shè)了A,B,C,D共4門選修課,每個(gè)學(xué)生必須且只能選修1門選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生.
(1)求這3名學(xué)生選修課所有選法的總數(shù);
(2)求恰有2門選修課沒有被這3名學(xué)生選擇的概率;
(3)求A選修課被這3名學(xué)生選擇的人數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$;
(1)設(shè)z=4x-3y,求z的最大值;
(2)設(shè)z=$\frac{y}{x}$,求z的最小值;
(3)設(shè)z=x2+y2,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,點(diǎn)A,C分別為橢圓C的左頂點(diǎn)和上頂點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),設(shè)過點(diǎn)A的直線交橢圓C與另一點(diǎn)M.
(Ⅰ)當(dāng)F關(guān)于直線AM的對(duì)稱點(diǎn)在y軸上時(shí),求直線AM的斜率;
(Ⅱ)記點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為P,連接PC交直線AM與點(diǎn)Q,當(dāng)點(diǎn)Q是線段AM的中點(diǎn)時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.N為圓x2+y2=1上的一個(gè)動(dòng)點(diǎn),平面內(nèi)動(dòng)點(diǎn)M(x0,y0)滿足|y0|≥1且∠OMN=30°(O為坐標(biāo)原點(diǎn)),則動(dòng)點(diǎn)M運(yùn)動(dòng)的區(qū)域面積為(  )
A.$\frac{8π}{3}$-2$\sqrt{3}$B.$\frac{4π}{3}$-$\sqrt{3}$C.$\frac{2π}{3}$+$\sqrt{3}$D.$\frac{4π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.根據(jù)下列條件,分別求A∩B,A∪B:
(1)A={x|x≥0},B={x|x≤0};
(2)A={x|x≥0},B={x|x<2};
(3)A={x|x≥0},B={x|x>2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$)是α的終邊與單位圓的交點(diǎn),O為坐標(biāo)原點(diǎn),將α的終邊繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)45°與單位圓交于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為( 。
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案