分析 (1)求函數(shù)的定義域,結(jié)合函數(shù)奇偶性的定義進(jìn)行判斷即可.
(2)根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解即可.
解答 解:(1)由1-2cos2x>0得cos2x<$\frac{1}{2}$,則$\frac{π}{3}$+2kπ<2x<$\frac{5π}{3}$+2kπ,即kπ+$\frac{π}{6}$<x<kπ+$\frac{5π}{6}$,
則定義域關(guān)于原點(diǎn)對(duì)稱,則f(-x)=y=log${\;}_{\frac{1}{2}}$(1-2cos2x)=f(x),
則函數(shù)f(x)是偶函數(shù);
(2)設(shè)t=1-2cos2x,則函數(shù)y=log${\;}_{\frac{1}{2}}$t為減函數(shù),
當(dāng)$\frac{π}{3}$+2kπ<2x≤π+2kπ,即kπ+$\frac{π}{6}$<x≤$\frac{π}{2}$+kπ時(shí),y=cos2x為減函數(shù),y=1-2cos2x為增函數(shù),y=log${\;}_{\frac{1}{2}}$(1-2cos2x)為減函數(shù),即單調(diào)遞減區(qū)間為(kπ+$\frac{π}{6}$,$\frac{π}{2}$+kπ],k∈Z,
當(dāng)π+2kπ≤2x<$\frac{5π}{3}$++2kπ,即$\frac{π}{2}$+kπ≤x<kπ+$\frac{5π}{6}$時(shí),y=cos2x為增函數(shù),y=1-2cos2x為減函數(shù),y=log${\;}_{\frac{1}{2}}$(1-2cos2x)為增函數(shù),即單調(diào)遞增區(qū)間為[$\frac{π}{2}$+kπ,kπ+$\frac{5π}{6}$],k∈Z.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷以及函數(shù)單調(diào)區(qū)間的求解,利用復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8π}{3}$-2$\sqrt{3}$ | B. | $\frac{4π}{3}$-$\sqrt{3}$ | C. | $\frac{2π}{3}$+$\sqrt{3}$ | D. | $\frac{4π}{3}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com