6.通過隨機(jī)調(diào)查200名性別不同的高中生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
愛好6545
不愛好4050
計(jì)算得:K2≈4.258,參照附表,得到的正確結(jié)論是( 。
A.在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

分析 題目的條件中已經(jīng)給出這組數(shù)據(jù)的觀測(cè)值,我們只要把所給的觀測(cè)值同節(jié)選的觀測(cè)值表進(jìn)行比較,發(fā)現(xiàn)它大于3.841,在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好這項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.

解答 解:由題意算得,k2=4.258>3.841,參照附表,可得
在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好這項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
故選A.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,本題有創(chuàng)新的地方就是給出了觀測(cè)值,只要進(jìn)行比較就可以,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-ay+8=0與直線x+2y+1=0垂直,則a的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=sin1-cosx,則f′(1)=( 。
A.sin1+cos1B.cos1C.sin1D.sin1-cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線y=lnx-x2在M(x0,y0)處的切線斜率為-1,則此切線方程是( 。
A.y=-x-2B.y=-x-1C.y=-x+1D.y=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中俯視圖中的弧線是半徑為1的四分之一個(gè)圓弧,則該幾何體的體積為( 。
A.1B.C.1-$\frac{π}{4}$D.1-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)為偶函數(shù),且當(dāng)x>0時(shí),f′(x)=(x-1)(x-2),則下列關(guān)系一定成立的是( 。
A.f(1)<f(2)B.f(0)>f(-1)C.f(-2)<f(1)D.f(-1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.把邊長為2的正方形ABCD沿對(duì)角線BD折起并連接AC形成三棱錐C-ABD,其正視圖、俯視圖均為等腰直角三角形(如圖所示),則三棱錐C-ABD的表面積為4+2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a=n(n-1)(n-2)…(n-50),則a可表示為(  )
A.${A}_{n}^{51}$B.${C}_{n}^{51}$C.${A}_{n}^{50}$D.${C}_{n}^{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點(diǎn)E在平面ABC上的射影落在∠ABC的平分線上.
(1)求證:DE∥平面ABC;
(2)求二面角E-BC-A.

查看答案和解析>>

同步練習(xí)冊(cè)答案