18.把邊長為2的正方形ABCD沿對角線BD折起并連接AC形成三棱錐C-ABD,其正視圖、俯視圖均為等腰直角三角形(如圖所示),則三棱錐C-ABD的表面積為4+2$\sqrt{3}$.

分析 結(jié)合直觀圖,根據(jù)正視圖、俯視圖均為全等的等腰直角三角形,可得平面BCD⊥平面ABD,分別求得△BDC和△ABD的高,即為側(cè)視圖直角三角形的兩直角邊長,代入面積公式計(jì)算.

解答 解:如圖:∵正視圖、俯視圖均為全等的等腰直角三角形,
∴平面BCD⊥平面ABD,
又O為BD的中點(diǎn),∴CO⊥平面ABD,OA⊥平面BCD,
三角形ACD與△ABC等式等邊三角形,邊長為2,所以面積相等為$\sqrt{3}$,
又△ABD和△BCD面積和為正方形的面積4,
∴三棱錐C-ABD的表面積為2$\sqrt{3}$+4;
故答案為:4+2$\sqrt{3}$.

點(diǎn)評 本題考查了由正視圖、俯視圖求幾何體的表面積,判斷幾何體的特征及相關(guān)幾何量的數(shù)據(jù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{32}{3}$B.8C.12D.$\frac{40}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知cosα=$\frac{12}{13}$,α∈(${\frac{3}{2}$π,2π),則cos(α-$\frac{π}{4}}$)的值為( 。
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.通過隨機(jī)調(diào)查200名性別不同的高中生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
愛好6545
不愛好4050
計(jì)算得:K2≈4.258,參照附表,得到的正確結(jié)論是( 。
A.在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=( 。
A.6B.-6C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在函數(shù)y=xlnx的圖象上的點(diǎn)A(1,0)處的切線方程是y=x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,$\sqrt{3}}$),且$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$垂直,則實(shí)數(shù)m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,長方體ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一點(diǎn),且滿足B1D⊥平面ACE.
(Ⅰ)求證:A1D⊥AE;
(Ⅱ)求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為$12+\frac{2π}{3}$,表面積為38+π.

查看答案和解析>>

同步練習(xí)冊答案