2.已知集合A={x|0<log2(3x-5)<2},集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$,那么A∩B=( 。
A.$({2,\frac{2π}{3}})$B.(2,3)C.$({2,\frac{5π}{6}})$D.$({2,\frac{3π}{4}})$

分析 先分別求出集合A和集合B,由此利用交集定義能求出A∩B.

解答 解:∵集合A={x|0<log2(3x-5)<2}={x|2<x<3},
集合$B=\left\{{x\left|{sinx>\frac{{\sqrt{3}}}{2}}\right.}\right\}$={x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}+2kπ$,k∈Z},
∴A∩B={x|2<x<$\frac{2π}{3}$}=(2,$\frac{2π}{3}$).
故選:A.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)和三角函烽的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等差數(shù)列{an}的前n項和為Sn,若a3=5,a5=3,則an=8-n,S7=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c,且a=2,b=3,cosB=$\frac{1}{3}$.
(1)求邊c的值;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.化簡$\frac{tan12°-\sqrt{3}}{sin12°cos24°}$=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=|lnx|-ax在區(qū)間(0,3]上有三個零點,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{ln3}{3}$)B.(0,$\frac{ln3}{3}$]C.($\frac{ln3}{3}$,$\frac{1}{e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A(-1,0),B(2,3),則|AB|=(  )
A.3B.$\sqrt{2}$C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知動圓C過定點F($\frac{1}{2}$,0),且始終保持與直線l:x=-$\frac{1}{2}$相切.
(1)求⊙C的圓心的軌跡方程;
(2)設(shè)定點A(a,0),點Q為曲線C上動點,求點A到點Q距離的最小值d(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y都是區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]內(nèi)任取的一個實數(shù),則使得y≤cosx的取值的概率是( 。
A.$\frac{4}{{π}^{2}}$B.$\frac{2}{π}$+$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{2}{{π}^{2}}$+$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案