分析 求出直線$\left\{\begin{array}{l}x=t\\ y=1+2t.\end{array}\right.$(t為參數(shù))與y軸的交點(diǎn)即為圓心C坐標(biāo),求出點(diǎn)C到直線x+y-3=0的距離即為圓的半徑,寫出圓的標(biāo)準(zhǔn)方程即可.
解答 解:圓C的圓心是直線$\left\{\begin{array}{l}x=t\\ y=1+2t.\end{array}\right.$(t為參數(shù))與y軸的交點(diǎn),得到圓心C(0,1),
∵圓心C(0,1)到直線x+y-3=0的距離d=$\frac{|0+1-3|}{\sqrt{2}}$=$\sqrt{2}$,
∴圓C半徑r=$\sqrt{2}$,
則圓C方程為x2+(y-1)2=2.
故答案為:x2+(y-1)2=2.
點(diǎn)評 此題考查了圓的標(biāo)準(zhǔn)方程,涉及的知識有:直線與y軸的交點(diǎn),點(diǎn)到直線的距離公式,以及直線與圓的位置關(guān)系,求出圓心坐標(biāo)與半徑是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平均車速超過 100km/h人數(shù) | 平均車速不超過 100km/h人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | 40 | 15 | 55 |
女性駕駛員人數(shù) | 20 | 25 | 45 |
合計(jì) | 60 | 40 | 100 |
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | $\frac{2}{3}$π | x1 | $\frac{8}{3}$π | x2 | x3 |
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}-2$ | B. | $\frac{3\sqrt{2}}{2}$-1 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com