【題目】在平面直角坐標系中,已知橢圓(),圓(),若圓的一條切線與橢圓相交于兩點.
(1)當, 時,若點都在坐標軸的正半軸上,求橢圓的方程;
(2)若以為直徑的圓經過坐標原點,探究是否滿足,并說明理由.
【答案】(1)(2)
【解析】試題分析:(1)利用點到直線的距離公式可求得,由點都在坐標軸的正半軸上,即可求得和的值,求得橢圓方程;(2)由以為直徑的圓經過點,可得,即,由在直線上,可將用表示,然后聯(lián)立直線與橢圓的方程結合韋達定理得,化簡可得結論.
試題解析:(1)∵直線與相切,∴.
由, ,解得.
∵點都在坐標軸正半軸上,
∴.
∴切線與坐標軸的交點為, .
∴, .
∴橢圓的方程是.
(2)的關系滿足.
證明如下:設,
∵以為直徑的圓經過點,
∴,即.
∵點在直線上,
∴.
∴ (*)
由消去,得.
即
顯然
∴由一元二次方程根與系數的關系,得
代入(*)式,得.
整理,得.
又由(1),有.
消去,得
∴
∴滿足等量關系.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 是等邊三角形,且側面底面, 分別是, 的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求平面與平面所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三數學競賽初賽考試后,對部分考生的成績進行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,若第四、五、六組的人數依次成等差數列,且第六組有4人.
(1)請補充完整頻率分布直方圖,并估計這組數據的平均數M;
(2)現根據初賽成績從第四組和第六組中任意選2人,記他們的成績分別為.若,則稱此二人為“黃金幫扶組”.試求選出的二人為“黃金幫扶組”的概率;
(3)以此樣本的頻率當做概率,現隨機在這所有考生中選出3名學生,求成績不低于120分的人數的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓(),圓(),若圓的一條切線與橢圓相交于兩點.
(1)當, 時,若點都在坐標軸的正半軸上,求橢圓的方程;
(2)若以為直徑的圓經過坐標原點,探究之間的等量關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中, 是坐標原點,動圓經過點,且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)過的直線交曲線于兩點,過作曲線的切線,直線交于點,求的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數x恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com