16.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點.
(1)求證:AB⊥C1F;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E-ABC的體積.

分析 (1)由BB1⊥平面ABC得AB⊥BB1,又AB⊥BC,故AB⊥平面B1BCC1,所以AB⊥C1F;
(2)取AB的中點G,連接EG,F(xiàn)G.則易得四邊形EGFC1是平行四邊形,故而C1F∥EG,于是C1F∥平面ABE;
(3)由勾股定理求出AB,代入棱錐的體積公式計算即可.

解答 (1)證明:∵BB1⊥底面ABC,AB?平面ABC
∴BB1⊥AB.
又∵AB⊥BC,BC?平面B1BCC1,BB1?平面B1BCC1,BC∩BB1=B,
∴AB⊥平面B1BCC1,
又∵C1F?平面B1BCC1
∴AB⊥C1F.
(2)證明:取AB的中點G,連接EG,F(xiàn)G.
∵F,G分別是BC,AB的中點,
∴FG∥AC,且FG=$\frac{1}{2}$AC,
∵AC$\stackrel{∥}{=}$A1C1,E是A1C1的中點,∴EC1=$\frac{1}{2}$A1C1
∴FG∥EC1,且FG=EC1,
∴四邊形FGEC1為平行四邊形,∴C1F∥EG.
又∵EG?平面ABE,C1F?平面ABE,EG?平面ABE,
∴C1F∥平面ABE.
(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\sqrt{3}$.
∴三棱錐E-ABC的體積V=$\frac{1}{3}$S△ABC•AA1=$\frac{1}{3}$×$\frac{1}{2}$×$\sqrt{3}$×1×2=$\frac{\sqrt{3}}{3}$.

點評 本題考查了線面垂直,線面平行的判定,棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用邊長為120cm的正方形鐵皮做一個無蓋水箱,先在四周分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接成水箱,則水箱的最大容積為( 。
A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正三棱錐V-ABC內(nèi),有一半球,其底面與正三棱錐的底面重合,且與正正三棱錐的三個側(cè)面都相切,若半球的半徑為2,則正三棱錐的體積最小時,其高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖莖葉圖表示的是甲乙兩個籃球隊在3次不同比賽中的得分情況,其中有一個數(shù)字模糊不清,在圖中以m表示,若甲隊的平均得分不低于乙隊的平均得分,那么m的可能取值集合為(  )
A.{2}B.{1,2}C.{0,1,2}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題p:?φ∈R,函數(shù)f(x)=sin(2x+φ)不是偶函數(shù),則¬p為( 。
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)是奇函數(shù)B.?φ∈R,函數(shù)f(x)=sin(2x+φ)不是偶函數(shù)
C.?φ∈R,函數(shù)f(x)=sin(2x+φ)是偶函數(shù)D.?φ∈R,函數(shù)f(x)=sin(2x+φ)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合$M=\left\{{(x,y)\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,N={(x,y)|y=k(x-b)+1},若對任意的0≤k≤1都有M∩N≠∅,則實數(shù)b的取值范圍是1-$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若要使輸出的y的值等于3,則輸入的x的值可以是( 。
A.1B.2C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國民在旅游休閑方面的投入不斷增多,民眾對旅游的需求也在不斷提高.某村村委會統(tǒng)計了2011到2015年五年間每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計數(shù)據(jù)如表所示:
年份(x)20112012201320142015
家庭數(shù)(y) 610182226
(1)從這5年中隨機(jī)抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個的概率;
(2)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\widehat y$=bx+a,
并判斷它們之間是正相關(guān)還是負(fù)相關(guān);
(3)利用(2)中所求出的直線方程估計該村2018年在春節(jié)期間外出游泳的家庭數(shù).
參考:用最小二乘法求線性回歸方程系數(shù)公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2+ax+b(a,b∈R),對于任意實數(shù)a,總存在實數(shù)m,當(dāng)x∈[m,m+1]時,使得f(x)≤0恒成立,則b的取值范圍為b≤-$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案