17.已知命題P:函數(shù)y=lg(x2+2x+a)的定義域為R;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實數(shù)a的取值范圍.

分析 當P真:f(x)=lg(x2+2x+a)的定義域為R,有△=4-4a<0,解得a
命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.當a=2時成立,
當a≠2時,可得$\left\{\begin{array}{l}{a-2<0}\\{△=4(a-2)^{2}+16(a-2)<0}\end{array}\right.$,解得a范圍.由于P∨Q是真命題,求出上述并集即可.

解答 解:當P真:f(x)=lg(x2+2x+a)的定義域為R,
有△=4-4a<0,解得a>1;
當命題Q真:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.當a=2時成立,
當a≠2時,可得$\left\{\begin{array}{l}{a-2<0}\\{△=4(a-2)^{2}+16(a-2)<0}\end{array}\right.$,解得-2<a≤2.
若P∨Q是真命題,則0<a<1或-2<a≤2.
因此實數(shù)a的取值范圍是-2<a≤2.
∵P∨Q是真命題,且P∧Q為假命題,
∴P真Q假,或P假Q真.
$\left\{\begin{array}{l}{a>1}\\{a≤-2或a>2}\end{array}\right.$,$\left\{\begin{array}{l}{a≤1}\\{-2<a≤2}\end{array}\right.$
即a>2或-2<a≤1.

點評 本題考查了指數(shù)函數(shù)的單調性、一元二次不等式的解集與判別式的關系、簡易邏輯的判定,考查了推理能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知點A(1,-1),B(3,5),則線段AB的垂直平分線的方程為x+3y-8=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知圓C的普通方程為(x-1)2+y2=3,過點M(1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.$(t為參數(shù),α為直線l的傾斜角).
(1)若直線l被圓C截得的弦AB的長為2,求直線l的傾斜角;
(2)求過點M引圓C的切線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(1)求a的值,并討論函數(shù)f(x)的單調性;
(2)當x∈[1,+∞)時,f(x)≥$\frac{m}{1+x}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=sinxcosx-cos2x+$\frac{1}{2}$在區(qū)間[0,$\frac{π}{2}$]上的最小值是( 。
A.-1B.-$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.邊長為a的正方體表面積為(  )
A.6a2B.4a2C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\sqrt{3}{a^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.建造一個容積為24m3,深為2m,寬為3m的長方體無蓋水池,如果池底的造價為120元/m3,池壁的造價為80元/m3,求水池的總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若f(x)是冪函數(shù),且滿足$\frac{f(9)}{f(3)}$=2,則f($\frac{1}{9}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序,若輸出的結果為2,則輸入的x的值為(  )
A.0或-1B.0或2C.-1或2D.-1或0或2

查看答案和解析>>

同步練習冊答案