12.直線y=kx+3與圓(x-1)2+(y+2)2=4相交于M,N兩點,若$MN≥2\sqrt{3}$,則實數(shù)k的取值范圍是$({-∞,-\frac{12}{5}}]$.

分析 由弦長公式得,當(dāng)圓心到直線的距離d≤1,利用點到直線的距離公式即可求解斜率k的范圍

解答 解:由弦長公式得,圓心到直線的距離d≤1
即d=$\frac{|k+2+3|}{\sqrt{1+{k}^{2}}}$≤1,
∴10k+24≤0
∴k≤-$\frac{12}{5}$.
故答案為:$({-∞,-\frac{12}{5}}]$.

點評 本題考查圓心到直線的距離公式的應(yīng)用,以及弦長公式的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,正三棱柱ABC-A1B1C1的底面邊長與側(cè)棱長均為2,D為AC中點.
(1)求證:B1C∥平面A1DB;
(2)求直線BD與平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若一個四棱錐底面為正方形,頂點在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時,它的高為( 。
A.3B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$\overrightarrow a$=(2,0),|$\overrightarrow b$|=1,則|$\overrightarrow a$+2$\overrightarrow b$|=( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.12D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=2x2-alnx在[1,+∞)內(nèi)存在單調(diào)減區(qū)間,則實數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=x2-x+1,命題p:?x∈R,f(x)>0,則(  )
A.p是真命題,¬p:?x0∈R,f(x0)<0B.p是真命題,¬p:?x0∈R,f(x0)≤0
C.p是假命題,¬p:?x0∈R,f(x0)<0D.p是假命題,¬p:?x0∈R,f(x0)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an}中,a3+a4+a5=21,a9=17.
(1)求數(shù)列{an}的通項公式;
(2)令bn=2an-an(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在實數(shù)集R上的函數(shù)y=f(x)滿足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0(x1≠x2),若f(5)=-1,f(7)=0,那么f(-3)的值可以為( 。
A.5B.-5C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)先化簡,再求值:$\frac{{a}^{2}-4}{{a}^{2}+6a+9}$÷$\frac{a-2}{2a+6}$,其中a=-5.
(2)解不等式組$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x+1}\\{1-3(x-1)<8-x}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案