17.已知f(x)=x2-x+1,命題p:?x∈R,f(x)>0,則(  )
A.p是真命題,¬p:?x0∈R,f(x0)<0B.p是真命題,¬p:?x0∈R,f(x0)≤0
C.p是假命題,¬p:?x0∈R,f(x0)<0D.p是假命題,¬p:?x0∈R,f(x0)≤0

分析 直接利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,f(x)=x2-x+1,命題p:?x∈R,f(x)>0,則¬p:?x0<R,f(x0)≤0.
故選:B.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,求A到平面A1BD的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,BC是圓O的直徑,點F在弧$\widehat{BC}$上,點A為弧$\widehat{BF}$的中點,做AD⊥BC于點D,BF與AD交于點E,BF與AC交于點G.
(Ⅰ)證明:AE=BE
(Ⅱ)若AC=9,GC=7,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}={n^2}+1(n∈{N^*})$求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=kx+3與圓(x-1)2+(y+2)2=4相交于M,N兩點,若$MN≥2\sqrt{3}$,則實數(shù)k的取值范圍是$({-∞,-\frac{12}{5}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,以F為圓心的圓過坐標(biāo)原點O,且與雙曲線C的兩漸近線分別交于A、B兩點,若四邊形OAFB是菱形,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓C1:x2+y2-4x-4y-1=0,圓C2:x2+y2+2x+8y-8=0,圓C1與圓C2的位置關(guān)系為( 。
A.外切B.相離C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點P(x,y)在圓x2+y2-6x-6y+14=0上.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={3,|a|},B={a,1},若A∩B={2},則A∪B=( 。
A.{0,1,3}B.{1,2,3}C.{0,1,2,3}D.{1,2,3,-2}

查看答案和解析>>

同步練習(xí)冊答案