在平面直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的平面直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的值.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)直接根據(jù)極坐標(biāo)方程與直角坐標(biāo)的轉(zhuǎn)換關(guān)系式結(jié)合三角函數(shù)中的兩角和與差的三角函數(shù)公式即可實(shí)現(xiàn)將曲線的參數(shù)方程化為直角坐標(biāo)方程;(Ⅱ)先將直線的參數(shù)方程與曲線的直角坐標(biāo)方程聯(lián)立轉(zhuǎn)化為含的一元二次方程,然后根據(jù)參數(shù)方程中的相關(guān)理論直接求的值.

試題解析:(Ⅰ)由,得,

當(dāng)時(shí),得,

對(duì)應(yīng)直角坐標(biāo)方程為:.

當(dāng),有實(shí)數(shù)解,說(shuō)明曲線過(guò)極點(diǎn),而方程所表示的曲線也過(guò)原點(diǎn).

∴曲線的直角坐標(biāo)方程為.        3分

(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,

,由于,故可設(shè)是上述方程的兩實(shí)根,

.       5分

∵直線過(guò)點(diǎn)

∴由的幾何意義,可得.     7分

考點(diǎn):極坐標(biāo)與參數(shù)方程、韋達(dá)定理

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案