20.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}$(θ為參數(shù)),P是曲線C上的動(dòng)點(diǎn),Q(4,0)為x軸的定點(diǎn),M是PQ的中點(diǎn).
(1)求點(diǎn)M的軌跡的參數(shù)方程,并把它轉(zhuǎn)化為普通方程;
(2)設(shè)x=2+$\sqrt{t}$,t為參數(shù),求其對(duì)應(yīng)的參數(shù)方程.

分析 (1)確定坐標(biāo)之間的關(guān)系,利用代入法點(diǎn)M的軌跡的參數(shù)方程,再把它轉(zhuǎn)化為普通方程;
(2)設(shè)x=2+$\sqrt{t}$,t為參數(shù),則y=$\sqrt{1-t}$,即可求其對(duì)應(yīng)的參數(shù)方程.

解答 解:(1)設(shè)M(x,y),P(a,b),則a=2x-4,b=2y,
∵P是曲線C上的動(dòng)點(diǎn),
∴2x-4=2cosθ,2y=2sinθ,
∴x=cosθ+2,y=sinθ,
∴點(diǎn)M的軌跡的參數(shù)方程是$\left\{\begin{array}{l}{x=cosθ+2}\\{y=sinθ}\end{array}\right.$,
普通方程是(x-2)2+y2=1;
(2)設(shè)x=2+$\sqrt{t}$,t為參數(shù),則y=$\sqrt{1-t}$,
∴對(duì)應(yīng)的參數(shù)方程是$\left\{\begin{array}{l}{x=2+\sqrt{t}}\\{y=\sqrt{1-t}}\end{array}\right.$(t為參數(shù)).

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,考查代入法求軌跡方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式|x-2|<2的解集是( 。
A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(0,4 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓ρ=2$\sqrt{2}$(cosθ-sinθ)的圓心極坐標(biāo)是( 。
A.$(\sqrt{2},\frac{3π}{4})$B.$({2,\frac{7π}{4}})$C.$(2,\frac{5π}{4})$D.$({2,\frac{3π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為( 。
A.$\sqrt{3}$米B.$2\sqrt{3}$米C.$3\sqrt{3}$米D.$4\sqrt{3}$米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知tanα=3,則$\frac{cos(π-α)}{{cos(α-\frac{π}{2})}}$的值為( 。
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,且a2+c2-b2=ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=$\sqrt{2}$,C=45°,求c邊的長(zhǎng)及面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓O的圓心為(2,-1),且圓與直線3x+4y-7=0相切.求:
(1)求圓O的標(biāo)準(zhǔn)方程;
(2)圓心O關(guān)于直線2x-y+1=0的對(duì)稱點(diǎn)O′為圓心,半徑不變的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題:“若|k|≤1,則關(guān)于x的不等式(k2-4)x2+(k+2)x-1≥0的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.復(fù)數(shù)$\frac{(1-i)^{2}}{i}$的值是-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案