7.在銳角△ABC中,求證:sinA+sinB+sinC>cosA+cosB+cosC.

分析 利用誘導公式以及三角形的性質證明求解即可.

解答 證明:∵△ABC是銳角三角形,∴$A+B>\frac{π}{2}$,即$\frac{π}{2}>A>\frac{π}{2}-B>0$
∴$sinA>sin(\frac{π}{2}-B)$,即sinA>cosB;同理sinB>cosC;sinC>cosA
∴sinA+sinB+sinC>cosA+cosB+cosC.

點評 本題考查三角形的解法,誘導公式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{2-si{n}^{2}2x+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知0<a<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=-$\frac{5}{13}$,sinα=$\frac{4}{5}$,則sinβ=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{56}{65}$D.-$\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(2x)=2x,那么f(8)等于(  )
A.$\frac{4}{3}$B.8C.18D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={1,2,3,x},B={1,4},若B⊆A,則x為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知(1+mx)n(m∈R,n∈N*)的展開式的二項式系數(shù)之和為32,且展開式中含x3項的系數(shù)為80.則(1+mx)n(1-x)6展開式中含x2項的系數(shù)為-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.方程x2+(k-2)x+2k-1=0,
(1)一根在0和1之間,另一根在1和2之間,求實數(shù)k的取值范圍.
(2)兩根都在(0,1)之間,求k的范圍.
(3)在(0,1)之間有一個零點,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=cos2x+sinx-1的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{\begin{array}{l}3x-5,(x≥6)\\ f(x+2),(x<6)\end{array}$,則f(3)=16.

查看答案和解析>>

同步練習冊答案