14.已知f(x)=(2x-3)9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,則a1+…+a9=2,f(9)+8被8除的余數(shù)是7.

分析 根據(jù)f(x)=[-1+2(x-1)]9,令x=1,可得a0=-1,令x=2,可得a1+…+a9的值.根據(jù)f(9)=159=(16-1)9 的解析式,可得除了末項(xiàng)外,其余各項(xiàng)都能被8整除,而末項(xiàng)為-1,從而求得f(9)+8被8除的余數(shù).

解答 解:f(x)=(2x-3)9=[-1+2(x-1)]9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,
令x=1,可得a0=-1,令x=2,可得-1+a1+…+a9=1,∴a1+…+a9=2.
f(9)=159=(16-1)9=${C}_{9}^{0}$•169+${C}_{9}^{1}$•168•(-1)1+${C}_{9}^{2}$•167•(-1)2+…+${C}_{9}^{8}$•16•(-1)8+${C}_{9}^{9}$•(-1)9,
除了末項(xiàng)外,其余各項(xiàng)都能被8整除,而末項(xiàng)為-1,故f(9)+8被8除的余數(shù)是7,
故答案為:2;7.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,還考查了整除性問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列各數(shù)中,是等差數(shù)列7,14,21,…中的項(xiàng)的是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\sqrt{3}$sin2ωx-cos2ωx+$\frac{1}{2}$(其中ω為常數(shù),且ω>0),函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象如圖所示.則當(dāng)x∈[-$\frac{π}{6}\;,\;\frac{π}{4}}$]時(shí),函數(shù)f(x)的取值范圍是[-$\frac{3}{2}$,$\sqrt{3}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bsinAsinC-$\sqrt{3}$asinBcosC=0
(1)求角C的值;
(2)若a=8,c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在數(shù)列{an}中,an+1-9an=9n+1,a1=9.
(1)求an
(2)設(shè)bn=an(1+$\frac{2}{{9}^{n}}$)-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.經(jīng)觀測(cè)發(fā)現(xiàn)在一般情況下,一過(guò)江大橋的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),函數(shù)v(x)的圖象如圖所示.
(1)根據(jù)圖象寫出當(dāng)0≤x≤180時(shí),函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知曲線C:xy=1,過(guò)C上一點(diǎn)An(xn,yn)作一斜率為kn=-$\frac{1}{{x}_{n}+2}$的直線交曲線C于另一點(diǎn)An+1(xn+1,yn+1),點(diǎn)列{An}的橫坐標(biāo)構(gòu)成數(shù)列{xn},其中x1=$\frac{11}{7}$
(Ⅰ)求xn與xn+1的關(guān)系式;
(Ⅱ)令bn=$\frac{1}{{x}_{n}-2}$+$\frac{1}{3}$,求證:數(shù)列{bn}是等比數(shù)列,并寫出通項(xiàng)公式;
(Ⅲ)若cn=3n-λbn(λ為非零正數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)f(x)=$\frac{\sqrt{x+1}-2}{x+4}$,x∈[0,3]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}滿足a1=1,an+1=3an+1(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{4}$(3n+1-2n-3).

查看答案和解析>>

同步練習(xí)冊(cè)答案