2.已知數(shù)列{an}滿足a1=1,an+1=3an+1(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{4}$(3n+1-2n-3).

分析 可設(shè)an+1+t=3(an+t),求得t=$\frac{1}{2}$,運(yùn)用等比數(shù)列的通項(xiàng)公式,可得數(shù)列{an}的通項(xiàng),再由數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)即可得到所求和.

解答 解:由a1=1,an+1=3an+1,
可設(shè)an+1+t=3(an+t),
即an+1=3an+2t,可得2t=1,即t=$\frac{1}{2}$,
則an+1+$\frac{1}{2}$=3(an+$\frac{1}{2}$),
可得數(shù)列{an+$\frac{1}{2}$}是首項(xiàng)為$\frac{3}{2}$,公比為3的等比數(shù)列,
即有an+$\frac{1}{2}$=$\frac{3}{2}$•3n-1
即an=$\frac{3}{2}$•3n-1-$\frac{1}{2}$,
可得數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$(1+3+32+…+3n-1)-$\frac{1}{2}$n
=$\frac{3}{2}$•$\frac{1-{3}^{n}}{1-3}$-$\frac{1}{2}$n=$\frac{1}{4}$(3n+1-2n-3).
故答案為:$\frac{1}{4}$(3n+1-2n-3).

點(diǎn)評(píng) 本題考查數(shù)列的求和方法:分組求和,同時(shí)考查構(gòu)造等比數(shù)列求數(shù)列通項(xiàng)公式的方法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=(2x-3)9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,則a1+…+a9=2,f(9)+8被8除的余數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足3an+1+an=0,a2=-$\frac{2}{3}$,則{an}的前5項(xiàng)的和等于(  )
A.$\frac{121}{27}$B.$\frac{122}{27}$C.$\frac{121}{81}$D.$\frac{122}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列三個(gè)命題:
①若回歸直線的斜率估計(jì)值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08;
②若偶函數(shù)f(x)(x∈R)滿足f(x+2)=f(x),且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|有3個(gè)根;
③函數(shù)f(x)=($\frac{3}{2}$)x-sinx-1在(0,+∞)內(nèi)有且只有一個(gè)零點(diǎn);
④已知函數(shù)f(x)=ax-lnx,且f(x1)=f(x2)=0,則$\frac{{x}_{1}+{x}_{2}}{2}$>e.
正確命題的序號(hào)是①③④(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=1,a11=3,且任意連續(xù)三項(xiàng)的和為9,則a2016=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,BC邊上的高為h,且h=a,則$\frac{c}$+$\frac{c}$+$\frac{{a}^{2}}{bc}$的最大值是(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知各項(xiàng)均不相等的等差數(shù)列{an}的前5項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為( 。
A.$\frac{n}{2(n+2)}$B.$\frac{n}{2(n+1)}$C.$\frac{2n}{n+2}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}的首項(xiàng)為a1,公差為d(0<d<2π)的等差數(shù)列,若數(shù)列{sinan}是等比數(shù)列,則其公比為(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l1:3x+4ay-2=0(a>0),l2:2x+y+2=0.
(1)當(dāng)a=1時(shí),直線l過l1與l2的交點(diǎn),且垂直于直線x-2y-1=0,求直線l的方程;
(2)求點(diǎn)M($\frac{5}{3}$,1)到直線l1的距離d的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案