分析 (Ⅰ)設(shè)曲線C2所在的拋物線的方程為y2=2px,將A($\frac{3}{2}$,$\sqrt{6}$)代入可得p的值,利用橢圓的定義,可得曲線C1所在的橢圓的方程;
(Ⅱ)設(shè)B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),過F2與x軸不垂直的直線為x=ty+1,與橢圓方程聯(lián)立,利用韋達(dá)定理可得|y1-y2|=$\frac{\sqrt{(16t)^{2}-4•(-64)•(9+8{t}^{2})}}{9+8{t}^{2}}$,同理可得|y3-y4|=$\sqrt{16{t}^{2}+16}$,進(jìn)而可得$\frac{|BE|•|G{F}_{2}|}{|CD|•|H{F}_{2}|}$為定值.
解答 解:(Ⅰ)設(shè)曲線C2所在的拋物線的方程為y2=2px,將A($\frac{3}{2}$,$\sqrt{6}$)代入可得6=2p×$\frac{3}{2}$,∴p=2
∴曲線C2所在的拋物線方程為:y2=4x…(2分)
∴c=1,2a=$\sqrt{(\frac{3}{2}+1)^{2}+(\sqrt{6})^{2}}$+$\sqrt{(\frac{3}{2}-1)^{2}+(\sqrt{6})^{2}}$=6,
∴曲線C1所在的橢圓的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}$=1. …(4分)
(Ⅱ)設(shè)B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),過F2與x軸不垂直的直線為x=ty+1,與橢圓方程聯(lián)立,消去x可得(9+8t2)y2+16ty-64=0,
∴y1+y2=-$\frac{16t}{9+8{t}^{2}}$,y1y2=-$\frac{64}{9+8{t}^{2}}$-,…(6分)
∴|y1-y2|=$\frac{\sqrt{(16t)^{2}-4•(-64)•(9+8{t}^{2})}}{9+8{t}^{2}}$
直線x=ty+1,與拋物線方程聯(lián)立,消去x可得y2-4ty-4=0,∴y3+y4=4t,y3y4=-4…(8分)
∴|y3-y4|=$\sqrt{16{t}^{2}+16}$
∴$\frac{|BE|•|G{F}_{2}|}{|CD|•|H{F}_{2}|}$=$\frac{|{y}_{1}-{y}_{2}|•\frac{1}{2}|{y}_{3}+{y}_{4}|}{|{y}_{3}-{y}_{4}|•\frac{1}{2}|{y}_{1}+{y}_{2}|}$=$\frac{\frac{\sqrt{(16t)^{2}-4(-64)(9+8{t}^{2})}}{9+8{t}^{2}}•|4t|}{\sqrt{16{t}^{2}+16•\frac{|16t|}{9+8{t}^{2}}}}$=3
即$\frac{|BE|•|G{F}_{2}|}{|CD|•|H{F}_{2}|}$為定值3 …(13分)
點(diǎn)評(píng) 本題考查橢圓、拋物線的標(biāo)準(zhǔn)方程,考查直線與橢圓、拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,聯(lián)立方程,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\sqrt{2}$ | D. | $-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | c>b>a | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 無法確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com