【題目】已知拋物線yx2-2x及直線x=0,xay=0圍成的平面圖形的面積為,求a的值.

【答案】a=-1,或a=2.

【解析】【試題分析】先作出的圖像,根據圖像分析可知,要將分成三類討論圍成區(qū)域.時, ;當時, ;當時, .三種情況分別求出的值,其中一個值舍去.

【試題解析】

 作出yx2-2x的圖象如圖.

(1)當a<0時,

S (x2-2x)dx

=(x3x2)|=-a2

,

∴(a+1)(a-2)2=0.

a<0,∴a=-1.

(2)當a>0時,0<a≤2,

S=-=(x2-2x)dx=-(x3-x2)=a2-a3=,

∴(a+11)(a-2)2=0.

∵a>0,

∴a=2.

即(a+1)(a-2)2=0.

a>0,∴a=2.

②當a>2時,

S=- (x2-2x)dx (x2-2x)dx

=-(x3x2)|+(x3x2)|

=-(-4)+(a3a2+4)

+(a3a2+4)=.

a3a2=0

a>2不合題意.

綜上a=-1,或a=2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A,B為曲線C:y= 上兩點,A與B的橫坐標之和為4.(12分)
(1)求直線AB的斜率;
(2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線斜率為0時,

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100 個網箱,測量各箱水產品的產量(單位:kg),其頻率分布直方圖如圖:

(Ⅰ)設兩種養(yǎng)殖方法的箱產量相互獨立,記A表示事件“舊養(yǎng)殖法的箱產量低于50kg,新養(yǎng)殖法的箱產量不低于50kg”,估計A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:

箱產量<50kg

箱產量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(Ⅲ)根據箱產量的頻率分布直方圖,求新養(yǎng)殖法箱產量的中位數(shù)的估計值(精確到0.01).
附:

P(K2≥k)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零點分別為x1 , x2 , x3 , 則(
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin(ωx﹣ )+b(ω>0),且函數(shù)圖象的對稱中心到對稱軸的最小距離為 ,當x∈[0, ]時,f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移 個單位長度得到函數(shù)g(x)圖象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2 ,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直線上取一點,作以為焦點的橢圓,則當最小時,橢圓的標準方程為____________________.

查看答案和解析>>

同步練習冊答案