精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零點分別為x1 , x2 , x3 , 則(
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1

【答案】D
【解析】解:∵f(x)=x﹣ ﹣1的零點為 >1,g(x)=x+2x的零點必定小于零,
h(x)=x+lnx的零點必位于(0,1)內,
∴x2<x3<x1
故選D.
【考點精析】關于本題考查的函數的零點與方程根的關系,需要了解二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】有下列命題:

①“的充要條件;

②“一元二次不等式的解集為R”的充要條件;

③“直線平行于直線的充分不必要條件;

④“的必要不充分條件.

其中真命題的序號為____________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有數列1,2,2,3,3,3,4,4,4,4,….

(1)問10是該數列的第幾項到第幾項?

(2)求第100項.

(3)求前100項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C上的動點P)滿足到定點A(-1,0)的距離與到定點B1,0)距離之比為

(1)求曲線C的方程。

(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線yx2-2x及直線x=0,xa,y=0圍成的平面圖形的面積為,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{}的前n項和2,數列{}滿足b11, b3b718,且2n≥2).

1)求數列{}{}的通項公式;

2)若,求數列{}的前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.

(1)求道路BE的長度;
(2)求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近日,某公司對其生產的一款產品進行促銷活動,經測算該產品的銷售量P(單位:萬件)與促銷費用x(單位:萬元)滿足函數關系:p=3﹣ (其中0≤x≤a,a為正常數).已知生產該產品件數為P(單位:萬件)時,還需投入成本10+2P(單位:萬元)(不含促銷費用),產品的銷售價格定為(4+ )元/件,假定生產量與銷售量相等.
(1)將該產品的利潤y(單位:萬元)表示為促銷費用x(單位:萬元)的函數;
(2)促銷費用x(單位:萬元)是多少時,該產品的利潤y(單位:萬元)取最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( , ),B( , ).則下列說法錯誤的是(

A.φ=
B.函數f(x)的一條對稱軸為x=
C.為了得到函數y=f(x)的圖象,只需將函數y=2sin2x的圖象向右平移 個單位
D.函數f(x)的一個單調減區(qū)間為[ , ]

查看答案和解析>>

同步練習冊答案