如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M為AD的中點.

(1)證明:MF⊥BD;
(2)若二面角A-BF-D的平面角的余弦值為,求AB的長.

(1)見解析    (2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

為空間的兩個不同的點,且,空間中適合條件的點的集合表示的圖形是                               .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,分別是正三棱柱的棱的中點,且棱,.
(1)求證:平面;
(2)在棱上是否存在一點,使二面角的大小為,若存在,求的長,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E、F、G分別是AB、AD、CD的中點,計算:

(1)·
(2)·;
(3)EG的長;
(4)異面直線AG與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體的邊長為2,,分別為,的中點,在五棱錐中,為棱的中點,平面與棱,分別交于,.
(1)求證:
(2)若底面,且,求直線與平面所成角的大小,并求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,平面平面.
(1)證明:平面;
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,平面,, 是的中點,
(1)證明:∥平面;
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點,分別是線段,,的中點,且點是線段上的動點.

(1)證明:直線平面
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在空間直角坐標系中,已知點A(1,0,2),B(1,-3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標是________

查看答案和解析>>

同步練習冊答案