14.給出下列四個命題:
①若命題p:?x0∈R,x02+x0+1<0,則?p:?x∈R,x2+x+1≥0;
②“a>b”是“ac2>bc2”的必要條件;
③命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
④已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

分析 ①根據(jù)含有量詞的命題的否定進(jìn)行判斷.
②根據(jù)充分條件和必要條件的定義進(jìn)行判斷.
③根據(jù)逆否命題的定義進(jìn)行求解決判斷.
④根據(jù)復(fù)合命題真假之間的關(guān)系進(jìn)行判斷.

解答 解:①若命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0;正確
②當(dāng)c=0時,若a>b,則ac2>bc2不成立,若ac2>bc2,則c≠0,則a>b,成立,②“a>b”是“ac2>bc2”的必要條件成立;故②正確,
③命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;正確,
④已知命題p和q,若p∨q為假命題,則命題p與q中必同時為假命題.錯誤,故④錯誤,
故選:C

點評 本題主要考查命題的真假判斷,涉及四種命題的關(guān)系,充分條件和必要條件的判斷,以及含有量詞的命題的否定和復(fù)合命題真假的關(guān)系,涉及的知識點較多.但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知斜三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,∠BAA1=$\frac{2π}{3}$,∠CAA1=$\frac{π}{3}$,AB=AC=1,AA1=2,點O是B1C與BC1的交點.
(1)求AO的距離;
(2)求異面直線AO與BC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U={1,2,3,4,5,6},A={1,2,5},B={2,3,4},則A∩(∁UB)=(  )
A.{2,6}B.{1,5}C.{1,6}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果2+i是關(guān)于x的實系數(shù)方程x2+mx+n=0的一個根,則mn的值為-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)正項等差數(shù)列{an}的前n項和為Sn,其中a1≠a2.a(chǎn)m、ak、an是數(shù)列{an}中滿足an-ak=ak-am的任意項.
(1)求證:m+n=2k;
(2)若$\sqrt{{S}_{m}}$,$\sqrt{{S}_{k}}$,$\sqrt{{S}_{n}}$也成等差數(shù)列,且a1=1,求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$≥$\frac{2}{{S}_{k}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列說法不正確的是(1)(4).
(1)命題“若x>0且y>0,則x+y>0”的否命題是真命題
(2)命題“$?{x_0}∈R,{x_0}^2-{x_0}-1<0$”的否定是“?x∈R,x2-x-1≥0”
(3)a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減
(4)若$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為120°,則$\overrightarrow b$在向量$\overrightarrow a$上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,過雙曲線上左支一點A作兩條相互垂直的直線分別過兩焦點,其中一條與雙曲線交于點B,若($\overrightarrow{AB}$+$\overrightarrow{A{F}_{2}}$)•$\overrightarrow{B{F}_{2}}$=0,則雙曲線的離心率為(  )
A.$\sqrt{5+2\sqrt{2}}$B.$\sqrt{5-2\sqrt{2}}$C.$\sqrt{4+2\sqrt{2}}$D.$\sqrt{4-2\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0,b>0若a+b=2,則$\frac{1}{1+a}+\frac{4}{1+b}$的最小為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊答案